T.C. AKDENİZ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

CİVATA BAĞLANTILARINDA ÖNGERİLME KAYBININ İNCELENMESİ

Burak MEŞHUR

YÜKSEK LİSANS TEZİ MAKİNE MÜHENDİSLİĞİ ANABİLİM DALI

2011

T.C. AKDENİZ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

CİVATA BAĞLANTILARINDA ÖNGERİLME KAYBININ İNCELENMESİ

Burak MEŞHUR

YÜKSEK LİSANS TEZİ MAKİNE MÜHENDİSLİĞİ ANABİLİM DALI

Bu tez 2009.02.0121.027 numarası ile Bilimsel Araştırma Projeleri kapsamında desteklenmektedir.

2011

T.C. AKDENİZ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

CİVATA BAĞLANTILARINDA ÖNGERİLME KAYBININ İNCELENMESİ

Burak MEŞHUR

YÜKSEK LİSANS TEZİ

MAKİNE MÜHENDİSLİĞİ ANABİLİM DALI

Bu tez/2011 tarihinde aşağıdaki jüri tarafından(......) not takdir edilerek Oybirliği / Oyçokluğu ile kabul edilmiştir.

Prof. Dr. Hikmet RENDE (Danışman)
Prof. Dr. Osman YALDIZ
Yrd. Doç. Dr. Cem HANYALOĞLU

ÖZET

CİVATA BAĞLANTILARINDA ÖNGERİLME KAYBININ İNCELENMESİ

Burak MEŞHUR

Yüksek Lisans Tezi, Makina Mühendisliği Anabilim Dalı Danışman: Prof. Dr. Hikmet RENDE Mayıs 2011, 154 Sayfa

Bu çalışma kapsamında M8, M10 ve M12 8.8 kalite civatalar, C1050 İmalat çeliği, ss304 Paslanmaz çelik ve Alüminyum flanşlar kullanılarak çeşitli yüzey pürüzlülüğü değerlerine sahip yüzeylerde sıkılarak öngerilme kayıpları ölçülmüştür. Ölçümlerde ultrasonik civata ölçer kullanılmıştır. Deneyler sırasında flanş yüzeylerinin ilk ve son haldeki pürüzlülük değerleri de ölçülerek pürüz ezilmesine bağlı plastik deformasyon miktarları da saptanılmaya çalışılmıştır.

Yapılan deneyler sonucunda literatürde verilen sürtünme katsayıları, öngerilme kayıpları, plastik deformasyon miktarlarının aslında daha az olduğu saptanmıştır. Bu durum civataların aşırı sıkılmasına sebep olarak akma sınırının dahi aşılmasına sebep olabilmektedir.

ANAHTAR KELİMELER: Öngerilme kuvveti, yüzey pürüzlülüğü, sürtünme katsayısı, ultrasonik ölçüm, sıkma momenti, plastik deformasyon

JÜRİ: Prof. Dr. Hikmet RENDE Prof. Dr. Osman YALDIZ Yrd. Doç. Dr. Cem HANYALOĞLU

ABSTRACT

INVESTIGATION OF PRELOAD LOSES OF TORQUED BOLTS

Burak MEŞHUR

M. Sc.Thesis in Mechanical Engineering Adviser: Prof. Dr. Hikmet RENDE May 2011, 154 Pages

In this work different surface finished C1050 steel, 304 Stainless and Alüminium flanges has had been tightened by 8.8 grade M8, M10 ve M12 bolts in order to measure preload loses. During the experiments ultrasonic bolt monitor has been used. During the experiments first and last surface rougness of the flanges has been measured to calculate the amouth of plastic deformation due to the surface rougness lost.

In the end of experiments, amounth of friction coefficient values, preload loses and plastical deformation values using to calculate bolt preloading is greater than the exact values. This causes overtighten and plasticaly deformed bolts.

KEY WORDS: Preload, surface roughness, friction coefficient, ultrasonic measurement, tightening torque, plastic deformation

COMMITTEE: Prof. Dr. Hikmet RENDE (Adviser)

Prof. Dr. Osman YALDIZ Asst. Prof.. Dr. Cem HANYALOĞLU

ÖNSÖZ

Günümüzde sökülebilen bağlama elemanlarında en çok kullanılanlarından birisi de öngerilmeli civata bağlantılarıdır. Ancak öngerilmeli civata bağlantılarının hesabı oldukça karmaşıktır. Başta yüzey kalitesi, flanş malzemesi , yağlama durumu olmak üzere çok sayıda parametrenin göz önüne alınarak uygulanacak moment değerinin hesaplanması ve bu momentin hassas bir aletle uygulanması gerekmektedir. Literatürde hesaplamalar için önerilen pek çok tablolar ve formüller bulunmaktadır. Ancak uygulamada karşılaşacağımız her durum için bu değerler uygun olmayabilmektedir.Bu durumda yapılan hesaplamalar sonucunda elde edilen moment değerini civataya uyguladığımızda olması gerekende az yada çok sıkılmış bir civatayla karşılaşmak her zaman olasıdır. Bu durum ya çözülme yada kopmayla sonuçlanabilecek hasarlara sebep olmaktadır. Bu çalışmada sanayide en sık karşılaşılan yüzey koşullarına sahip çeşitli malzemeler için öngerilme deneyleri yapılmış ve literatürdeki verilerin yetersiz kaldığı yada yanlış yönlendirdiği durumlar göz önüne serilmiştir.

Bana bu konuda çalışma olanağı veren danışmanım sayın Prof. Dr. Hikmet RENDE'ye teşekkürlerimi sunarım.

ÖZET	i
ABSTRACT	ii
ÖNSÖZ	iii
İÇİNDEKİLER	iv
SİMGELER ve KISALTMALAR DİZİNİ	viii
ŞEKİLLER DİZİNİ	xi
ÇİZELGELER DİZİNİ	XV
1. GİRİŞ	1
2. KURAMSAL BİLGİLER ve KAYNAK TARAMALARI	2
2.1. Civata Bağlantıları	2
2.1.1. Civataların sınıflandırılması	4
2.1.2. Civatalarda tolerans	5
2.1.3. Civata malzemeleri	6
2.2. Civata Hesapları	7
2.2.1.Kuvvet iletimi	7
2.2.2. Toplam sıkma momenti	13
2.3 Öngerilme Teorisi	14
2.3.1. Efektif Boy	18
2.4. Civata Bağlantılarında Gerilmeler	19
2.4.1. Çekme altında gerilme dağılımı	19
2.5. Bağlantıdaki Gerilmeler	21
2.5.1. Civata-Bağlantı arasındaki temas gerilmeleri	21
2.5.2. Bağlantı parçaları arasındaki gerilmeler	23
2.6. Kombine Yükler Altında Civata Dayanımı	24
2.7. Civatalarda Öngerilme Kuvveti Kaybı ve Sebepleri	27
2.7.1. Civatalarda montaj sonrası öngerilme kayıpları	29
2.7.1.1. Civatalarda montaj sonrasi öngerilme kayıplarının sebep	ler.29
2.7.1.2. Kısa zaman öngerilme kayıplarını etkileyen faktörler	34
2.7.1.3. Beklenen öngerilme kuvveti kaybı miktarı	35
2.7.2. Somun faktörleri	36
2.7.3. Civata sıkma yöntemleri ve sıkma faktörü	38

İÇİNDEKİLER

2.8. Yüzey Pürüzlülüğü	41
3. MATERYAL ve METOT	47
3.1. Materyal	47
3.1.1. Numunelerin hazırlanması	47
3.1.2. Yüzey pürüzlülüğü ölçüm cihazı	48
3.1.2.1. Pürüzlülük değerlerinin ölçülmesi	49
3.1.2.2. Cihazda bulunan ölçüm parametreleri	50
3.1.3. Tork değerinin ölçülmesi	51
3.1.4. Civatanın ilk boyunun ve uzama değerlerinin ölçülmesi	51
3.1.4.1. Ultrasonik dalgalar	53
3.1.4.2 Algılayıcı-civata yüzeyi temas şartları	55
3.1.4.3. Yankı yüzeyi	56
3.1.4.4. Algılayıcı Seçimi	56
3.1.4.5. Cihazın sıfırlanması	57
3.1.4.6. Cihaz Parametreleri	57
3.2. Metot	58
3.2.1. Uygulanan momentin oluşturacağı öngerilme kuvveti de	eğerinin
hesaplanması	62
3.2.2. Teorik olarak sürtünmesiz halde civatada oluşacak öngerilme	kuvveti
hesabı	64
3.2.3. Yüzey pürüzlerinin ezilmesine bağlı plastik deforma	asyonun
miktarının hesaplanması	64
4. BULGULAR	66
4.1 C1050 İmalar Çeliği Flanşlarla Yapılan Öngerilme Kuvveti Kaybı De	neyleri
	66
4.1.1 M8x1,25 Civata deneyleri	66
4.1.1.1. Taşlanmış yüzey şartlarında yapılan deneyler	66
4.1.1.2. Frezelenmiş (Kuru) yüzey şartlarında yapılan deneyler	68
4.1.1.3. Frezelenmiş (Yağlı) yüzey şartlarında yapılan deneyler	69
4.1.2 M10x1,5 Civata deneyleri	71
4.1.2.1. Taşlanmış yüzey şartlarında yapılan deneyler	71
4.1.2.2. Frezelenmiş (Kuru) yüzey şartlarında yapılan deneyler.	73

4.1.2.3. Frezelenmiş (Yağlı) yüzey şartlarında yapılan deneyler	76
4.1.3 M12x1,75 Civata deneyleri	77
4.1.3.1. Taşlanmış yüzey şartlarında yapılan deneyler	77
4.1.3.2. Frezelenmiş (Kuru) yüzey şartlarında yapılan deneyler	79
4.1.3.3. Frezelenmiş (Yağlı) yüzey şartlarında yapılan deneyler	81
4.2 SS304 Paslanmaz Çelik Flanşlarla Yapılan Öngerilme Kuvveti	Kaybı
Deneyleri	83
4.2.1 M8x1,25 Civata deneyleri	83
4.2.1.1. Tornalanmış yüzey şartlarında yapılan deneyler	83
4.2.1.2. Frezelenmiş (Kuru) yüzey şartlarında yapılan deneyler	85
4.2.1.3. Frezelenmiş (Yağlı) yüzey şartlarında yapılan deneyler	87
4.2.2 M10x1,5 Civata deneyleri	89
4.2.2.1. Tornalanmış yüzey şartlarında yapılan deneyler	89
4.2.2.2. Frezelenmiş (Kuru) yüzey şartlarında yapılan deneyler	91
4.2.2.3. Frezelenmiş (Yağlı) yüzey şartlarında yapılan deneyler	93
4.2.3 M12x1,75 Civata deneyleri	95
4.2.3.1. Tornalanmış yüzey şartlarında yapılan deneyler	95
4.2.3.2. Frezelenmiş (Kuru) yüzey şartlarında yapılan deneyler	97
4.2.3.3. Frezelenmiş (Yağlı) yüzey şartlarında yapılan deneyler	99
4.3 Aluminyum Flanşlarla Yapılan Öngerilme Kuvveti Kaybı Deneyleri	101
4.3.1. M8x1,25 Civata deneyleri	101
4.3.1.1. Polisajlanmış yüzey şartlarında yapılan deneyler	101
4.3.1.2. Frezelenmiş (Kuru) yüzey şartlarında ya	apılan
deneyler	103
4.3.1.3. Frezelenmiş (Yağlı) yüzey şartlarında ya	apılan
deneyler	105
4.3.2 M10x1,5 Civata deneyleri	107
4.3.2.1. Polisajlanmis yüzey şartlarında yapılan deneyler	107
4.3.2.2. Frezelenmiş (Kuru)yüzey şartlarında ya	apılan
deneyler	109
4.3.2.3. Frezelenmiş (Yağlı) yüzey şartlarında ya	apılan
deneyler	111

4.3.3 M12x1,75 Civata deneyleri1	13
4.3.3.1. Polisajlanmis yüzey şartlarında yapılan deneyler1	13
4.3.3.2. Frezelenmiş (Kuru) yüzey şartlarında yapı	lan
deneyler1	15
4.3.3.3. Frezelenmiş (Yağlı) yüzey şartlarında yapı	lan
deneyler1	17
4.4 Ortalama Öngerilme Kuvveti Kayıpları1	19
4.5 Yüzey Pürüzlülüğü Kaybı Deneyleri1	21
4.5.1. C1050 İmalat çeliği flanşlarla yapılan yüzey pürüzlülüğü ka	ybı
deneyleri1	22
4.5.2. SS 304 Paslanmaz çelik flanşlarla yapılan yüzey pürüzlülüğü ka	ybı
deneyleri1	29
4.5.3. Alüminyum flanşlarla yapılan yüzey pürüzlülüğü ka	ybı
deneyleri1	36
5. SONUÇ1	48
6. KAYNAKLAR1	52
ÖZGEÇMİŞ	

SİMGELER ve KISALTMALAR DİZİNİ

Simgeler

- d Dış çap
- d₂ Ortalama çap
- d₃ Diş dibi çapı
- P Hatve
- β Tepe Açısı
- z₀ Vida ağız sayısı
- M_{CS} Civata sıkma momenti
- M_{CG} Civata gevșetme momenti
- M₁ Civata dişlerindeki sürtünmeyi yenmeye harcanan moment
- M₂ Civata oturma yüzeyindeki sürtünmeyi yenmeye harcanan moment
- F_C Teğetsel kuvvet
- F_{ÖN} Öngerilme kuvveti
- F_N Normal kuvvet
- ρ Sürtünme açısı
- μ Somun ile civata dişleri araındaki yüzey pürüzlülüğü
- μ_S Somun ile parça yüzeyi arasındaki yüzey pürüzlülüğü
- r_S Somun oturma yarıçapı
- Δ_{lc} Civatadaki uzama
- Δ_{lp} Parçadaki kısalma
- F_{iş} İşletme kuvveti
- σ_{Ak} Akma gerilmesi
- σ_C Civatada meydana gelen çekme gerilmesi
- σ_P Parçada meydana gelen çekme gerilmesi
- σ_{muk} Civatada meydana gelen mukayese gerilmesi

- C_C Civata rijitliği
- C_P Parça rijitliği
- F_Z Değişken/Titreşimli işletme kuvveti genliği
- E Elastisite modülü
- E Birim Uzama
- A_C Civata kesit alanı
- A_P Parça kesit alanı
- d_k Yaklaşık anahtar açıklığı
- D_A Basıya zorlandığı varsayılan silindirin dış çapı
- D_B Delik çapı
- l_P Flanş kalınlığı
- f_z Yüzey pürüzü ezilme miktarı
- A_S Gerilme kesiti alanı
- d_{min} Uzar civatalarda şaftın en küçük kesiti
- τ Burulma gerilmesi
- W_P Polar atalet momenti
- F_{Mmaks} Maksimum montaj kuvveti
- α_A Sıkma faktörü
- R Ortalama pürüz motifi derinliği
- R_a Pürüzlülük profilinden sapmanın aritmetik ortası
- R_q Pürüzlülük profilinden sapmanın aritmetik ortasının karekökü
- R_z Ortalama pürüz çukur mesafesi
- R_p Pürüzlülük profilindeki en yüksek nokta
- R_v Pürüzlülük profilindeki en alçak nokta
- Rt Pürüzlülük profilindeki en alçak nokta ve en yüksek nokta arasındaki fark
- Pc 1 cm'deki tepe sayısı

- Sm Ortalama profil bozukluğu aralığı
- R_{sk} Pürüzlülük parametresi
- R_{ku} Kurtosis eğrisi
- Lt Pürüzlülük ölçüm boyu
- t_p Profil yatak uzunluğu
- M_r Malzeme oranı
- λ_{C} Sınır dalga boyu değeri
- X_E Civatadaki ölçülen uzama miktarı
- S_F Sonik gerilme faktörü
- V₀ Malzeme hızı
- ΔT Zamandaki değişim
- L_f Yük faktörü
- C_L Civata montaj boyu
- P_{ÖL} Civatadaki ölçülen öngerilme kuvveti miktarı
- ΔL Civatada ölçülen uzama miktarı
- L_E Gerilme altındaki ortalama boy
- R_{ZC} Civata oturma yüzeyi pürüzlülüğü
- R_{ZS} Somun oturma yüzeyi pürüzlülüğü
- R_{Zfü} Üst flanş alt yüzey pürüzlülüğü
- R_{Zfa} Alt flanş üst yüzey pürüzlülüğü
- ΔR_{ZS} Somun oturma yüzeyinde ölçülen pürüzlülüğü kaybı
- ΔR_{Zfu} Üst flanş alt yüzeyde ölçülen yüzey pürüzlülüğü kaybı
- ΔR_{Zfa} Alt flanş üst yüzeyde ölçülen yüzey pürüzlülüğü kaybı
- ΔRz Montaj sonrası ölçülen yüzey pürüzlülüğü kaybı
- %Rz İlk yüzey pürüzlülüğüne göre gerçekleşen yüzde bazında kayıp
- ΣRz Tüm temas yüzeylerinde meydana gelen toplam pürüz kaybı

ŞEKİLLER DİZİNİ

Şekil 2.1. Civata-somun bağlanlatıları	3
Şekil 2.2. Helis açınımı ve temel civata büyüklükleri	4
Şekil 2.3 Çeşitli vida profilleri	5
Şekil 2.4. Civatada öngerilme kuvveti	8
Şekil 2.5. Kare profilli civatada kuvvetler	9
Şekil 2.6. Trapez ve üçgen vida profilinde açılar	10
Şekil 2.7. Vida profilinde F_N kuvvet bileşenleri	11
Şekil 2.8. Somun altındaki sürtünme yüzeyi	12
Şekil 2.9. İşletme kuvveti altında civata davranışı	14
Şekil 2.10. Civata ve parça için kuvvet-şekil değiştirme grafiği	15
Şekil 2.11. Civata rijitliği ile F _Z ilişkisi	16
Şekil 2.12. Civata bağlantılarında basıya zorlanan kısımda kesitler	17
Şekil 2.13. Civatalarda efektif boy	18
Şekil 2.14. Çekme kuvveti altında gerilmeler	19
Şekil 2.15. Civata-Flanş bağlantısında gerilme dağılımı	20
Şekil 2.16. Civatada bazı eksenler doğrultusunda çeki-bası gerilmeleri	20
Şekil 2.17. Kısa-kalın civatalarda çeki-bası gerilmeleri	21
Şekil 2.18. Civata-Flanş arasındaki temas basıncı dağılımı	22
Şekil 2.19. Bağlanan flanş parçalarında gerilme dağılımı	23
Şekil 2.20. Delikten uzaklaştıkça basınç değişimi	24
Şekil 2.21. Çekme ve Torklama durumunda civatadaki gerilmeler	24
Şekil 2.22. Civatada Tork-Enerji ilişkisi	27
Şekil 2.23. Civata-Delik etkileşimi	29
Şekil 2.24. Montaj elemanlarının etkisi	
Şekil 2.25. Civatada temas yüzeylerinde pürüzlülük	30
Şekil 2.26. Plastik deformasyondan dolayı öngerilme kuvvetindeki azalma	30
Şekil 2.27. Uygun olmayan diş geçişi	33
Şekil 2.28. Civata-Delik çakışması	34
Şekil 2.29. Montaj kuvveti-Zaman grafiği	35
Şekil 2.30. Civataların tekrar kullanılmasıyla Tork-Öngerilme	37
Şekil 2.31. Yağlı ve Kuru durumda, öngerilme kuvvetinden sapma olasılığı	

Şekil 2.32. Molibden disülfit yağlanmış ve kuru durumlarda Tork - Uzama Grafiği	38
Şekil 2.33. Yüzey karakteristikleri	42
Şekil 2.34. Yüzey profili	43
Şekil 2.35. Profil eğrisindeki yumuşama	43
Şekil 2.36. Profil ölçüm uzunlukları	44
Şekil 2.37. R _a ve R _q değerleri	45
Şekil 2.38. R _p ve R _v	45
Şekil 2.39. Rz parametresinin hesaplanması	46
Şekil 3.1. Deneylerde kullanılan flanşların ölçüleri	48
Şekil 3.2 Deneylerde kullanılan flanşlar	48
Şekil 3.3. Mahr yüzey pürüzlülük ölçüm cihazı	49
Şekil 3.4. Tronic AT-1003-LDIN analog göstergeli torkmetre	51
Şekil 3.5. Mini-Max ultrasonik civata ölçüm cihazı	52
Şekil 3.6. Ses dalgası ve yankı	54
Şekil 3.7. Pürüzlü yüzey ve sapmış dalga	55
Şekil 3.8. Eğik Temas	55
Şekil 3.9. Civata başındaki kazıntı	55
Şekil 3.10. Civata başındaki kabartı	55
Şekil 3.11. Yankı yüzeyindeki pürüzlülük sorunu	56
Şekil 3.12. Eğik yankı yüzeyi sorunu	56
Şekil 3.13. Eğik civata sorunu	56
Şekil 3.14. Flanşların yüzey pürüzlülüğünün ölçülmesi	59
Şekil 3.15. Civata boyunun ölçülmesi	60
Şekil 3.16. Civatanın sıkılması	60
Şekil 3.17 Deneylerde kullanılan bazı semboller ve büyüklükler	65
Şekil 4.1. M8 civata ve taşlanmış imalat çeliği yüzey için Tork - Fon grafiği	67
Şekil 4.2. M8 civata ve frezelenmiş imalat çeliği yüzey için Tork - Fon grafiği	69
Şekil 4.3. M8 civata ve frezelenmiş imalat çeliği yağlı yüzey için Tork - Fon grafiği	71
Şekil 4.4. M10 civata ve taşlanmış imalat çeliği yüzey için Tork - Fon grafiği	73
Şekil 4.5. M10 civata ve frezelenmiş imalat çeliği yüzey için Tork - Fon grafiği	75
Şekil 4.6. M10 civata ve frezelenmiş imalat çeliği yağlı yüzey için Tork - Fon grafiğ	i.77
Şekil 4.7. M12 civata ve taşlanmış imalat çeliği yüzey için Tork - Fon grafiği	79

Şeki 4.8. M12 civata ve frezelenmiş imalat çeliği yüzey için Tork - F_{on} grafiği.......81 Şekil 4.9. M12 civata ve frezelenmiş imalat çeliği yağlı yüzey için Tork - F_{on} grafiği....83 Şekil 4.10. M8 civata ve tornalanmış paslanmaz çelik yüzey için Tork - F_{on} grafiği.....85 Şekil 4.11. M8 civata ve frezelenmiş paslanmaz çelik yüzey için Tork - F_{on} grafiği......87 Şekil 4.12. M8 civata ve frezelenmiş paslanmaz çelik yağlı yüzey için Tork - F_{on}

Şekil 4.13. M10 civata ve tornalanmış paslanmaz çelik yüzey için Tork - F_{on} grafiği...91 Şekil 4.14. M10 civata ve frezelenmiş paslanmaz çelik yüzey için Tork - F_{on} grafiği....93 Şekil 4.15. M10 civata ve frezelenmiş paslanmaz çelik yağlı yüzey Tork-F_{on} grafiği....95 Şekil 4.16. M12 civata ve tornalanmış paslanmaz çelik yüzey için Tork - F_{on} grafiği....97 Şekil 4.17. M12 civata ve frezelenmiş paslanmaz çelik yüzey için Tork - F_{on} grafiği....99 Şekil 4.18. M12 civata ve frezelenmiş paslanmaz çelik yüzey için Tork - F_{on} grafiği....99

grafiği......101

Şekil 4.19. M8 civata ve polisajli alüminyum yüzey için Tork - Fon grafiği......102 Şekil 4.20. M8 civata ve frezelenmiş alüminyum yüzey için Tork - Fon grafiği......105 Şekil 4.21. M8 civata ve frezelenmiş alüminyum yağlı yüzey için Tork - Fon grafiği..107 Şekil 4.22. M10 civata ve polisajli alüminyum yüzey için Tork - Fon grafiği.....109 Şekil 4.23. M10 civata ve frezelenmiş alüminyum yüzey için Tork - Fon grafiği......111 Şekil 4.24. M10 civata ve frezelenmiş alüminyum yağlı yüzey için Tork - Fon grafiği113 Şekil 4.25. M12 civata ve polisajlanmış alüminyum yüzey için Tork - Fon grafiği.....115 Şekil 4.26. M12 civata ve frezelenmiş alüminyum yüzey için Tork - Fon grafiği......117 Şekil 4.27. M12 civata ve frezelenmiş alüminyum yağlı yüzey için Tork - Fon grafiği119 Şekil 4.30 Frezelenmiş paslanmaz çelik flanşlar için Moment - ΔRz grafiği......135 Şekil 4.31 Frezelenmiş paslanmaz çelik flanşlar için Moment - %ΔRz grafiği......135 Şekil 4.33 Frezelenmiş alüminyum flanşlar için Moment - %ΔRz grafigi......142 Şekil 4.34 M8 civata için flanş malzemelerine göre Moment - ∆RZ grafigi......143 Şekil 4.36 M12 civata için flanş malzemelerine göre Moment - ΔRZ grafigi......143 Şekil 4.37 M8 civata için flanş malzemelerine göre Moment - %∆RZ grafigi......144

Şekil 4.38 M10 civata için flanş malzemelerine göre Moment - %ΔRZ grafigi......144 Şekil 4.39 M12 civata için flanş malzemelerine göre Moment - %ΔRZ grafigi......145

ÇİZELGELER DİZİNİ

Çizelge 2.1. Kullanım amacına göre civatalar	2
Çizelge 2.2. Civatalarda açılacak delik standardı	6
Çizelge 2.3. Civata ve somun mukavemet sınıfları	7
Çizelge 2.4. Somun-Flanş yüzeyi arasındaki sürtünme katsayısı	13
Çizelge 2.5. Bazı civata ebatları için temas basıncı değerleri	22
Çizelge 2.6. Tecrübeye bağlı olarak fz'nin yaklaşık değerleri	32
Çizelge 2.7. Montaj boyu ile nominal çap oranına bağlı f_Z değerleri	32
Çizelge 2.8. Sıkma yöntemine bağlı olarak α_A değerleri	40
Çizelge 3.1. Deneylerde kullanılan civataların ölçüleri	47
Çizelge 3.2. Pürüzlülük ölçüm cihazı parametreleri	50
Çizelge 3.3. 10 mm kalınlıklı ikili flanş montajı için civata L_E değerleri	58
Çizelge 3.4. Deneylerde kullanılan flanşlara uygulanan yüzey işlemleri	59
Çizelge 3.5. Çeşitli civata ebatlarına karşılık tavsiye edilen öngerilme ve moment	
değerleri	61
Çizelge 3.6. Deneyler kapsamında civatalara uygulanan moment değerleri	61
Çizelge 3.7. Çeşitli civata ebatlarına karşılık gelen çap ve alan büyüklükleri	63
Çizelge 3.8. Flanş yüzeyleri ve vida dişleri için seçilen sürtünme katsayıları	63
Çizelge 4.1 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve İdeal sürtünm	nesiz
halde F _{SSZ} değerleri	66
Çizelge 4.2. Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{OL} değerleri	66
Çizelge 4.3. Uygulanan momente karşılık ölçüle n $F_{\ddot{O}L}$ ve İdeal sürtünmesiz halde	F _{SSZ}
değerleri	67
Çizelge 4.4. Uygulanan momente karşılık formülle hesaplanan F_{ON} ve İdeal sürtünm	nesiz
halde F _{SSZ} değerleri	68
Çizelge 4.5. Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{OL} değerleri	68
Çizelge 4.6. Uygulanan momente karşılık ölçülen F_{OL} ve İdeal sürtünmesiz halde	F _{SSZ}
değerleri	69
Çizelge 4.7. Uygulanan momente karşılık formülle hesaplanan F_{ON} ve İdeal sürtünm	nesiz
halde F _{SSZ} değerleri	69
Çizelge 4.8. Uygulanan momente karşılık ölçülen uzama (ΔL) ve F _{ÖL} değerleri	70

Çizelge 4.9. Uygulanan momente karşılık ölçülen F_{OL} ve İdeal sürtünmesiz halde F_{SSZ}
değerleri70
Çizelge 4.10. Uygulanan momente karşılık formülle hesaplanan $F_{\ddot{O}N}$ ve İdeal
sürtünmesiz halde F _{SSZ} değerleri71
Çizelge 4.11. Uygulanan momente karşılık ölçülen uzama (ΔL) ve F _{ÖL} değerleri72
Çizelge 4.12. Uygulanan momente karşılık ölçülen F_{OL} ve İdeal sürtünmesiz halde F_{SSZ}
değerleri72
Çizelge 4.13. Uygulanan momente karşılık formülle hesaplanan $F_{\mbox{ON}}$ ve İdeal
sürtünmesiz halde F _{SSZ} değerleri
Çizelge 4.14. Uygulanan momente karşılık ölçülen uzama (ΔL) ve F _{ÖL} değerleri74
Çizelge 4.15. Uygulanan momente karşılık ölçülen F_{OL} ve İdeal sürtünmesiz halde F_{SSZ}
değerleri
Çizelge 4.16. Uygulanan momente karşılık formülle hesaplanan F_{ON} ve İdeal
sürtünmesiz halde F _{SSZ} değerleri
Çizelge 4.17. Uygulanan momente karşılık ölçülen uzama (ΔL) ve F _{ÖL} değerleri76
Çizelge 4.18. Uygulanan momente karşılık ölçülen F_{OL} ve İdeal sürtünmesiz halde F_{SSZ}
değerleri76
Çizelge 4.19. Uygulanan momente karşılık formülle hesaplanan F_{ON} ve İdeal
sürtünmesiz halde F _{SSZ} değerleri
Çizelge 4.20. Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{OL} değerleri78
Çizelge 4.21. Uygulanan momente karşılık ölçülen F_{OL} ve İdeal sürtünmesiz halde F_{SSZ}
değerleri
Çizelge 4.22. Uygulanan momente karşılık formülle hesaplanan F_{ON} ve İdeal
sürtünmesiz halde F _{SSZ} değerleri
Çizelge 4.23. Uygulanan momente karşılık ölçülen uzama (ΔL) ve F _{ÖL} değerleri80
Çizelge 4.24. Uygulanan momente karşılık ölçülen F_{OL} ve İdeal sürtünmesiz halde F_{SSZ}
değerleri
Çizelge 4.25. Uygulanan momente karşılık formülle hesaplanan F_{ON} ve İdeal
sürtünmesiz halde F _{SSZ} değerleri
Cizelge 1.26 Uvgulanan momente karşılık ölçülen uzama (AL) ve För değerleri 82
φ_{12} erge 4.20. O'ygulanan momente karşırık ölçülen üzanla (ΔL) ve 1 O_L degenen
Çizelge 4.20. Uygulanan momente karşılık ölçülen F_{OL} ve İdeal sürtünmesiz halde F_{SSZ}

Çizelge	4.28.	Uygulanan	momente	karşılık	formülle	hesaplanan	$F_{\ddot{O}N}$	ve	İdeal
	sür	tünmesiz hald	le F _{SSZ} değ	erleri			•••••		83
Çizelge	4.29. U	^J ygulanan mo	mente karş	ılık ölçüle	en uzama (ÄL) ve F _{ÖL} d	leğerle	eri	84
Çizelge	4.30. U	J ygulanan m o	omente kars	şılık ölçül	en F _{ÖL} ve	İdeal sürtünn	nesiz	halde	e F _{SSZ}
	değ	erleri							84
Çizelge	4.31.	Uygulanan	momente	karşılık	formülle	hesaplanan	Fön	ve	İdeal
	sür	tünmesiz hald	le F _{SSZ} değ	erleri					85
Çizelge	4.32. U	Jygulanan mc	mente karş	ılık ölçüle	en uzama (ΔL) ve F _{ÖL} d	eğerle	eri	86
Çizelge	4.33. U	Jygulanan mo	omente kars	şılık ölçül	en F _{ÖL} ve	İdeal sürtünn	nesiz	halde	e F _{SSZ}
	değ	erleri							86
Çizelge	4.34.	Uygulanan	momente	karşılık	formülle	hesaplanan	F _{ÖN}	ve	İdeal
	sür	tünmesiz hald	le F _{SSZ} değ	erleri			•••••		87
Çizelge	4.35. U	Jygulanan mo	mente karş	ılık ölçüle	en uzama (ΔL) ve F _{ÖL} d	eğerle	eri	88
Çizelge	4.36. U	Jygulanan mo	omente kars	şılık ölçül	en F _{ÖL} ve	İdeal sürtünn	nesiz	halde	e F _{SSZ}
	değ	erleri							88
Çizelge	4.37.	Uygulanan	momente	karşılık	formülle	hesaplanan	Fön	ve	İdeal
	sür	tünmesiz hald	le F _{SSZ} değ	erleri					89
Çizelge	4.38. U	^J ygulanan mo	mente karş	ılık ölçüle	en uzama (ΔL) ve F _{ÖL} d	eğerle	ri	90
Çizelge	4.39. U	Jygulanan mo	omente kars	şılık ölçül	en F _{ÖL} ve	İdeal sürtünn	nesiz	halde	e F _{SSZ}
	değ	erleri							90
Çizelge	4.40.	Uygulanan	momente	karşılık	formülle	hesaplanan	Fön	ve	İdeal
	sür	tünmesiz hald	le F _{SSZ} değ	erleri			•••••		91
Çizelge	4.41. U	^J ygulanan mo	mente karş	ılık ölçüle	en uzama (ΔL) ve F _{ÖL} d	eğerle	ri	92
Çizelge	4.42. U	Jygulanan mo	omente kars	şılık ölçül	en F _{ÖL} ve	İdeal sürtünn	nesiz	halde	e F _{SSZ}
	değ	erleri							92
Çizelge	4.43.	Uygulanan	momente	karşılık	formülle	hesaplanan	Fön	ve	İdeal
	sür	tünmesiz hald	le F _{SSZ} değ	erleri					93
~				1 1 1 1	(× 1		
Çızelge	4.44. U	^J ygulanan mo	omente karş	ilik ölçül	en uzama (ΔL) ve F_{OL} d	egerle	er1	94
Çızelge Çizelge	4.44. U 4.45. U	Jygulanan mo Jygulanan mo	omente karş omente karş	sılık ölçül Sılık ölçül	en uzama (en F _{ÖL} ve	ΔL) ve F _{öL} d İdeal sürtünn	egerie nesiz l	halde	94 e F _{SSZ}
Çızelge Çizelge	4.44. U 4.45. U değ	Jygulanan mo Jygulanan mo gerleri	omente karş omente karş	ılık ölçül şılık ölçül	en uzama (en F _{ÖL} ve	ΔL) ve F _{öL} d İdeal sürtünr	egerle nesiz	halde	94 e F _{SSZ} 94
Çızelge Çizelge Çizelge	4.44. U 4.45. U değ 4.46.	Jygulanan mo Jygulanan mo gerleri Uygulanan	omente karş omente karş momente	ilik ölçül şılık ölçül 	en uzama (en F _{öL} ve formülle	ΔL) ve F _{ÖL} d İdeal sürtünn hesaplanan	egerle nesiz 1 F _{ÖN}	halde	94 e F _{SSZ} 94 İdeal

Çizelge 4.47. Uygulanan momente karşılık ölçülen uzama (ΔL) ve F _{ÖL} değerleri96
Çizelge 4.48. Uygulanan momente karşılık ölçülen F_{OL} ve İdeal sürtünmesiz halde F_{SSZ}
değerleri96
Çizelge 4.49. Uygulanan momente karşılık formülle hesaplanan $F_{\ddot{O}N}$ ve İdeal
sürtünmesiz halde F _{SSZ} değerleri97
Çizelge 4.50. Uygulanan momente karşılık ölçülen uzama (ΔL) ve F _{ÖL} değerleri98
Çizelge 4.51. Uygulanan momente karşılık ölçülen F_{OL} ve İdeal sürtünmesiz halde F_{SSZ}
değerleri
Çizelge 4.52. Uygulanan momente karşılık formülle hesaplanan F_{ON} ve İdeal
Summesiz naide F_{SSZ} degenen
Çizelge 4.53. Uygulanan momente karşılık ölçülen uzama (ΔL) ve F _{ÖL} degerleri100
Çizelge 4.54. Uygulanan momente karşılık olçulen F_{OL} ve ideal surtunmesiz halde F_{SSZ}
degerleri
Çizelge 4.55. Uygulanan momente karşılık formulle hesaplanan F_{ON} ve ideal
sürtünmesiz halde F_{SSZ} değerleri
Çızelge 4.56. Uygulanan momente karşılık ölçülen uzama (ΔL) ve F _{OL} değerleri102
Çızelge 4.57. Uygulanan momente karşılık ölçülen F_{OL} ve İdeal sürtünmesiz halde F_{SSZ}
değerleri
Çizelge 4.58. Uygulanan momente karşılık formülle hesaplanan F_{ON} ve Ideal
sürtünmesiz halde F _{SSZ} değerleri103
Çizelge 4.59. Uygulanan momente karşılık ölçülen uzama (ΔL) ve F _{öL} değerleri104
Çizelge 4.60. Uygulanan momente karşılık ölçülen F_{OL} ve Ideal sürtünmesiz halde F_{SSZ}
değerleri104
Çizelge 4.61. Uygulanan momente karşılık formülle hesaplanan F_{ON} ve İdeal
sürtünmesiz halde F _{SSZ} değerleri105
Çizelge 4.62. Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{OL} değerleri106
Çizelge 4.63. Uygulanan momente karşılık ölçülen F_{OL} ve İdeal sürtünmesiz halde F_{SSZ}
değerleri
Çizelge 4.64. Uygulanan momente karşılık formülle hesaplanan F_{ON} ve İdeal
sürtünmesiz halde F _{SSZ} değerleri107
Çizelge 4.65. Uygulanan momente karşılık ölçülen uzama (ΔL) ve F _{ÖL} değerleri108

Çizelge 4.66. Uygulanan momente karşılık ölçülen F_{OL} ve İdeal sürtünmesiz halde F_{SSZ}
değerleri108
Çizelge 4.67. Uygulanan momente karşılık formülle hesaplanan $F_{\ddot{O}N}$ ve İdeal
sürtünmesiz halde F _{SSZ} değerleri109
Çizelge 4.68. Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{OL} değerleri110
Çizelge 4.69. Uygulanan momente karşılık ölçülen F_{OL} ve İdeal sürtünmesiz halde F_{SSZ}
değerleri110
Çizelge 4.70. Uygulanan momente karşılık formülle hesaplanan F_{ON} ve İdeal
sürtünmesiz halde F _{SSZ} değerleri111
Çizelge 4.71. Uygulanan momente karşılık ölçülen uzama (ΔL) ve F _{ÖL} değerleri112
Çizelge 4.72. Uygulanan momente karşılık ölçülen F_{OL} ve İdeal sürtünmesiz halde F_{SSZ}
değerleri
Çizelge 4.73. Uygulanan momente karşılık formülle hesaplanan F_{ON} ve İdeal
sürtünmesiz halde F _{SSZ} değerleri113
Çizelge 4.74. Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{OL} değerleri114
Çizelge 4.75. Uygulanan momente karşılık ölçülen F_{OL} ve İdeal sürtünmesiz halde F_{SSZ}
değerleri114
değerleri
değerleri
 değerleri
değerleri
değerleri.114Çizelge 4.76. Uygulanan momente karşılık formülle hesaplanan F_{ON} ve İdeal sürtünmesiz halde F_{SSZ} değerleri.115Çizelge 4.77. Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{OL} değerleri.116Çizelge 4.78. Uygulanan momente karşılık ölçülen F_{OL} ve İdeal sürtünmesiz halde F_{SSZ} değerleri.116Çizelge 4.79. Uygulanan momente karşılık formülle hesaplanan F_{ON} ve İdeal sürtünmesiz halde F_{SSZ} değerleri.117Çizelge 4.79. Uygulanan momente karşılık formülle hesaplanan F_{ON} ve İdeal sürtünmesiz halde F_{SSZ} değerleri.117Çizelge 4.80. Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{OL} değerleri.118Çizelge 4.81. Uygulanan momente karşılık ölçülen F_{OL} ve İdeal sürtünmesiz halde F_{SSZ} değerleri.118Çizelge 4.82. Deneylerde ölçülen öngerilme kuvveti kaybı ortalamaları.119Çizelge 4.83. Önerilen sürtünme katsayısı değerleri.120Çizelge 4.84. Deney numunelerinin HB sertlik değerleri.121
değerleri. 114 Çizelge 4.76. Uygulanan momente karşılık formülle hesaplanan F _{ON} ve İdeal sürtünmesiz halde F _{SSZ} değerleri. 115 Çizelge 4.77. Uygulanan momente karşılık ölçülen uzama (ΔL) ve F _{OL} değerleri. 116 Çizelge 4.78. Uygulanan momente karşılık ölçülen F _{OL} ve İdeal sürtünmesiz halde F _{SSZ} değerleri. 116 Çizelge 4.79. Uygulanan momente karşılık ölçülen roğu ve İdeal sürtünmesiz halde F _{SSZ} değerleri. 117 Çizelge 4.79. Uygulanan momente karşılık formülle hesaplanan F _{ON} ve İdeal sürtünmesiz halde F _{SSZ} değerleri. 117 Çizelge 4.80. Uygulanan momente karşılık ölçülen uzama (ΔL) ve F _{OL} değerleri. 118 Çizelge 4.81. Uygulanan momente karşılık ölçülen F _{OL} ve İdeal sürtünmesiz halde F _{SSZ} değerleri. 118 Çizelge 4.81. Uygulanan momente karşılık ölçülen F _{OL} ve İdeal sürtünmesiz halde F _{SSZ} değerleri. 118 Çizelge 4.82. Deneylerde ölçülen öngerilme kuvveti kaybı ortalamaları. 119 Çizelge 4.83. Önerilen sürtünme katsayısı değerleri. 120 Çizelge 4.84. Deney numunelerinin HB sertlik değerleri. 121 Çizelge 4.85. İmalat çeliği flanş ve M8 civata kullanılarak ölçülen yüzey pürüzlülüğü

Çizelge 4.86. İmalat çeliği flanş ve M10 civata kullanılarak ölçülen yüzey pürüzlülüğü
kayıpları123
Çizelge 4.87. İmalat çeliği flanş ve M12 civata kullanılarak ölçülen yüzey pürüzlülüğü
kayıpları124
Çizelge 4.88. İmalat çeliği flanş ve M8 civata için sıkma momentine bağlı yüzey
pürüzlülüğü kaybı ortalamaları125
Çizelge 4.89. İmalat çeliği flanş ve M10 civata için sıkma momentine bağlı yüzey
pürüzlülüğü kaybı ortalamaları125
Çizelge 4.90. İmalat çeliği flanş ve M12 civata için sıkma momentine bağlı yüzey
pürüzlülüğü kaybı ortalamaları126
Çizelge 4.91. İmalat çeliği flanş ve M8 Civata için sıkma momentine bağlı toplam
yüzey pürüzlülüğü kaybı126
Çizelge 4.92. İmalat çeliği flanş ve M10 Civata için sıkma momentine bağlı toplam
yüzey pürüzlülüğü kaybı127
Çizelge 4.93. İmalat çeliği flanş ve M12 Civata için sıkma momentine bağlı toplam
yüzey pürüzlülüğü kaybı127
Çizelge 4.94. Frezelenmiş imalat çeliği yüzeyler için Literatürdeki formül ve
tablolardan hesaplanan yüzey pürüzlülüğü kaybı değerleri127
Çizelge 4.95. Paslanmaz çelik flanş ve M8 civata kullanılarak ölçülen yüzey
pürüzlülüğü kayıpları129
Çizelge 4.96. Paslanmaz çelik flanş ve M10 civata kullanılarak ölçülen yüzey
pürüzlülüğü kayıpları130
Çizelge 4.97. Paslanmaz çelik flanş ve M12 civata kullanılarak ölçülen yüzey
pürüzlülüğü kayıpları131
Çizelge 4.98. Paslanmaz çelik flanş ve M8 civata için sıkma momentine bağlı yüzey
pürüzlülüğü kaybı ortalamaları132
Çizelge 4.99. Paslanmaz çelik flanş ve M10 civata için sıkma momentine bağlı yüzey
Çizelge 4.99. Paslanmaz çelik flanş ve M10 civata için sıkma momentine bağlı yüzey pürüzlülüğü kaybı ortalamaları
 Çizelge 4.99. Paslanmaz çelik flanş ve M10 civata için sıkma momentine bağlı yüzey pürüzlülüğü kaybı ortalamaları
 Çizelge 4.99. Paslanmaz çelik flanş ve M10 civata için sıkma momentine bağlı yüzey pürüzlülüğü kaybı ortalamaları
 Çizelge 4.99. Paslanmaz çelik flanş ve M10 civata için sıkma momentine bağlı yüzey pürüzlülüğü kaybı ortalamaları

Çizelge 4.102. Paslanmaz çelik flanş ve M10 Civata için sıkma momentine bağlı
toplam yüzey pürüzlülüğü kaybı134
Çizelge 4.103. Paslanmaz çelik flanş ve M12 Civata için sıkma momentine bağlı
toplam yüzey pürüzlülüğü kaybı134
Çizelge 4.104. Frezelenmiş paslanmaz çelik yüzeyler için Literatürdeki formül ve
tablolardan hesaplanan yüzey pürüzlülüğü kaybı değerleri134
Çizelge 4.105. Alüminyum flanş ve M8 civata kullanılarak ölçülen yüzey pürüzlülüğü
kayıpları136
Çizelge 4.106. Alüminyum flanş ve M10 civata kullanılarak ölçülen yüzey pürüzlülüğü
kayıpları137
Çizelge 4.107. Alüminyum flanş ve M12 civata kullanılarak ölçülen yüzey pürüzlülüğü
kayıpları138
Çizelge 4.108. Alüminyum flanş ve M8 civata için sıkma momentine bağlı yüzey
pürüzlülüğü kaybı ortalamaları139
Çizelge 4.109. Alüminyum flanş ve M10 civata için sıkma momentine bağlı yüzey
pürüzlülüğü kaybı ortalamaları139
Çizelge 4.110. M12 civata için sıkma momentine bağlı yüzey pürüzlülüğü kaybı
ortalamaları140
Çizelge 4.111. Alüminyum flanş ve M8 Civata için sıkma momentine bağlı toplam
yüzey pürüzlülüğü kaybı140
Çizelge 4.112. Alüminyum flanş ve M10 Civata için sıkma momentine bağlı toplam
yüzey pürüzlülüğü kaybı141
Çizelge 4.113. Alüminyum flanş ve M12 Civata için sıkma momentine bağlı toplam
yüzey pürüzlülüğü kaybı141
Çizelge 4.114. Frezelenmiş alüminyum yüzeyler için Literatürdeki formül ve
tablolardan hesaplanan yüzey pürüzlülüğü kaybı değerleri141
Çizelge 4.115 Flanş malzemesine bağlı olarak pürüz ezilmesinden kaynaklanan

1. GİRİŞ

Bir civata bağlantısının bağlama görevini kusursuz bir şekilde yerine getirebilmesi için mutlaka belirli bir ön gerilme kuvveti ile yüklenmesi gerekmektedir. Bu öngerilme kuvveti civatanın malzemesi, bağlanan parçaların malzemesi, bağlanan parçalar ve somun-civata dişleri arasındaki sürtünme kuvveti dolayısıyla yüzey pürüzlülük değeri vb. pek çok etmen tarafından belirlenmektedir. Ayrıca operatorün ve kullanılan tork aletinin hassasiyeti de büyük önem taşımaktadır. Bu faktörlerden en önemlisi yüzey pürüzlülüğüne bağlı sürtünme kuvvetidir. Yetersiz bir öngerilme kuvveti zayıf bir bağlantı oluşturarak zamanla parçaların birbirinden ayrılmasına sebep olabileceği gibi, aşırı bir öngerilme kuvveti üzerine eklenecek bir işletme kuvveti sonucu civata bağının kopmasına sebep olabilecektir.

Civataya uygulanan sıkma momentini büyük bir kısmı civataya öngerilme kuvveti olarak aktarılamamakta, sürtünme kuvvetlerini yenmeye harcanmaktadır. Ayrıca bağlanan parçalar ve somun - parça arasındaki yüzey pürüzleri sıkma işlemi sırasında bir miktar ezilerek yine öngerilme kuvvetinde azalmaya sebep olmaktadır.

Yukarıda verilen veriler ışığında aslında civata bağlantısının öngerilme kuvvetinin doğru bir şekilde hesaplanmasının önemli olduğu kadar bir o kadar da zor olduğu görülmektedir. Pratikte civata bağlantılarının ön gerilme kuvveti ve montaj torku hesaplanırken çeşitli formüller ve kabullerden faydalanılmaktadır. Bu formüller ve tablolar genellikle yüzey pürüzlülük değerine göre belirlenmektedir. Ancak yüzey pürüzlerindeki ezilmeye bağlı olarak gerçekleşen öngerilme kaybı ile ilgili literatürde fazla bir çalıışma yapılmamıştır. Bu konuda veriler yetersiz olmakla beraber genelde öngerilme kuvveti ve gerekli moment hesaplarında bu durum ihmal edilmektedir.

Bu çalışmada amaç olarak civata-flanş bağlantılarındaki yüzey pürüzlülüğüne bağlı olarak gerçekleşen öngerilme kuvveti kaybı incelenerek literatürdeki bu eksiklik giderilecek, halihazırda kullanılan kabullerdeki, tablolardaki ve ampirik formüllerdeki yanılma payları göz önüne serilecektir.

2. KURAMSAL BİLGİLER ve KAYNAK TARAMALARI

2.1. Civata Bağlantıları

Çözülebilen bağlama konstruksiyonlarında en sık kullanılan bağlantı elemanlarında birisi de civata bağlantılarıdır. Bağlanacak elemanlarda sadece delik delme işlemine yada bir kısmına delik delinip diğerlerine vida açma gibi kolay ön hazırlık gerektirmesi, standart boyutlarda olmaları, seri ve ucuza üretilmeleri montajlarının bir anahtar ile kolaylıkla yapılabilmeleri gibi sebeplerle tercih edilmektedirler. Kullanım amaçlarına göre civataların sınıflandırılması Çizelge 2.1'de verilmiştir.

Civata Türü	Kullanım Amacı
Bağlama Civatası	Makine parçalarının çözülebilir bağlanmasında
Ayar Civatası	Aşınma veya boşluk ayarı gereken yerlerde
Hareket Civatası	Vidalı pres, mengene ve kriko gibi mekanizmalarda küçük
	çevre kuvvetleri ile büyük eksenel kuvvetler elde etmekte
Ölçü Civatası	Mikrometre gibi çok yüksek hassasiyet istenen
	mekanizmalarda
Gergi Civatası	Ön gerilme kuvveti gereken gergi mekanizmalarında
Kapama Civatası	Yağ deliklerinin kapatılması ve sızdırmazlık elemanı olarak

Çizelge 2.1. Kullanım amacına göre civatalar (BABALIK 1997)

Civata bağlantıları dolu bir silindir uzerine bir profilin helisel bir hareketle sarılması ile meydana gelen cıvata ve içi bos bir silindirin iç çevre yuzeyine, aynı profilin aynı helisel hareketle sarılmasından meydana gelen somun olmak üzere iki elemandan meydana gelmektedir. Yüzeye sarılan profillere ise vida profili denilir. Civata ve somun çiftlerinin sorunsuz çalışabilmesi için vida profillerinin ve adımlarının (hatvelerinin) aynı olması gerekmektedir.

Şekil 2.1. Civata-somun bağlantıları

Civataların bağlama elemanı olarak kullanılması durumunda Şekil 2.1'de görüldüğü gibi somun ayrı bir parça olabilir veya bağlanacak parçalardan birisine iç vida açılarak somun haline getirilebilir. Bir tarafı doğrudan doğruya bağlanacak parçaya vidalanan ve somunla birlikte kullanılan elemanlar kullanılabilir. Bu tür civatalara saplama adı verilir.

Civatalarda teorik olarak sarılan helisi çap (d), hatve (P) ve helis açısı (α) olmak üzere üç faktör tayin eder. Bir helis eğrisi açıldığı zaman bir dik üçgen elde edilir. Şekil 2.2. Dik üçgenin P yüksekliğine helis adımı (vida hatvesi) denir. Üçgenin tabanı silindirin cevre uzunluğu;

$$L = \pi.d$$
 (2.1)

Buna göre dik üçgenden helis açısı veya eğimi;

$$\alpha = \operatorname{arctg}_{\pi.d}^{P}$$
 (2.2)

olarak tanımlanır.

Anılan işlem borunun iç yüzeyi için yapılıyorsa somun elde edilir. Vida profilinin her noktası eğim açısı farklı olan helislerle çizilmektedir. Dış çap d , ortalama çap d₂ ve diş dibi çapı d₃ ile gösterilirse

$$\alpha_2 = \operatorname{arctg} \frac{P}{\pi.d_2}$$
 (2.3)

$$\alpha_3 = \operatorname{arctg}_{\pi.d_3}^{p}$$
 (2.4)

şeklinde belirlenir. Hesaplamalarda vidanın helis açısı olarak vida ortalama capına d₂'ye karşılık gelen helis açısı alınır. Hatve, civatanın tam bir dönüşüne karşılık gelen eksenel yöndeki ilerlemedir.

Şekil 2.2. Helis açınımı ve temel civata büyüklükleri (BABALIK 1997)

Somunda da nominal çap D , ortalama çap D₂, diş başı çapı D₁ ile gösterilir. (D=d ve D₂=d₂ dir). Civata şaftının dış çapı, aynı zamanda civatanın nominal çapıdır ve d ile gösterilir. Civatanın diş dibi çapı d₃'tür. Mukavemet hesaplarında civata kesit alanı belirlenirken en zayıf kesit burası olduğu için bu çap kullanılır.

$$A_3 = \frac{\pi . d_3^2}{4}$$
 (2.5)

Metrik ISO vidalarında diş dibi çapı ile nominal çap arasında: $d_3 = d - 1,22687.P$ ortalama çap ile nominal çap arasında ise $d_2 = d - 064953.P$ bağıntısı vardır.

2.1.1. Civataların sınıflandırılması

Civata veya somunun elde edilmesinde helisel hareketle silindir üzerine veya delik yüzeyine sarılan profillerin şekline uygun olarak Şekil 2.3.'de gösterildiği gibi vidalara; üçgen vida, trapez vida, yuvarlak vida, testere vida ve kare vida isimleri verilir. Vida profillerinin birbirinden ayırt edilmesini sağlayan β tepe açısı vardır. Profili

üçgen şeklinde olan vidalar metrik ve Whitworth olmak üzere ikiye ayrılır. Metrik vida profili eşkenar üçgen olup tepe acısı $\beta = 60^\circ$, whitworth vida profili ikizkenar üçgen olup tepe acısı $\beta = 55^\circ$ 'dir

Hareket vidalarında kare, testere ve yuvarlak profil kullanılır. En sık kullanılan tepe açısı 30° olan simetrik trapezdir. Standart gösterimi Tr 'den sonra çap ve adım yazılarak yapılır. Testere vida ise asimetrik tarpez kesite sahiptir. Yük tarafı 3°, arka tarafi 30° eğimli ve yük tarafı 0°, arka tarafı 45° eğimli iki türü vardır.

Şekil 2.3 Çeşitli vida profilleri

Metrik ve Whitworth vidaların diş başları ile diş dipleri çentik etkisini azaltmak için yuvarlatılmıstır. Metrik vidalar normal ve ince diş olmak üzere iki çeşittir. Aynı dış çap için ince vidanın hatvesi normal vidaya göre daha küçüktür. Bunun sonucu olarak ince vidanın diş dibi çapı normal vidanınkinden daha büyüktür. Metrik civatalar M harfinden sonra nominal çap yazılarak gösterilir.

Diş profillerinin silindir uzerine sarılma yönüne göre vida sağ veya sol vida olabilir. Civata sıkılırken saat ibresi yönünde döndürülüyorsa vida sağ helis, saat ibresinin tersi yönünde döndürülüyorsa sol helistir.

2.1.2. Civatalarda tolerans

Civatalar; vidaların uyumu, ekonomik üretilebilmesi, bağlantılarının yeterli kalitede ve mukavemette olabilmesi için belirli bir toleransa uymak zorundadır. Civata için a, b, c, d, e, f ve g toleransları, somun için ise H ve G toleransları tespit edilmiştir.

ISO sistemine göre civata toleransları ince, orta ve kaba olmak üzere üç sınıfa ayrılmıştır.

TS 528 EN 20273 Nisan 2002 kapsamında 'Bağlama Elemanları/Civatalar için boşluklu delikler' standardına göre civatalara göre açılacak delik standatları Çizelge 2.2'de verilmiştir.

Vida Çapı	Boşluklu Delik d _h						
D (mm)	İnce (mm)	Orta (mm)	Kaba (mm)				
1	1,1	1,2	1,3				
1,2	1,3	1,4	1,5				
1,4	1,5	1,8					
1,6	1,7	1,8	2				
1,8	2	2,2					
2	2,2	2,4	2,6				
2,5	2,7	2,9	3,1				
3	3,2	3,4	3,6				
3,5	3,7	3,9	4,2				
4	4,3	4,5	4,8				
4,5	4,8	5	5,3				
5	5,3	5,5	5,8				
6	6,4	6,6	7				
7	7,4	7,6	8				
8	8,4	9	10				
10	10,5	11	12				
12	13	13,5	14,5				
14	14	15,5	16,5				
16	17	17,5	18,5				
18	19	20	21				
20	21	22	24				
22	23	24	26				
24	25	26	28				
27	28	30	32				

Çizelge 2.2. Civatalarda açılacak delik standardı (TS 528 EN 20273 Nisan 2002)

2.1.3. Civata malzemeleri

Civata ve somunlar imalat metoduna ve civatalarının kullanılacağı ortamın özelliklerine bağlı olarak farklı malzemelerden imal edilmektedir. Bağlama civataları için genellikle sünek çelikler kullanılır. Bu çelikler ısıl işlemlerden geçirilerek çok geniş bir mukavemet aralığında çeşitlendirilmiştir. Çeliğin yanısıra civata ve somun malzemesi olarak alüminyum alaşımları, pirinç ve elektrik izolasyonu gerektiren alanlarda poliamid, teflon gibi plastikler de kullanılmaktadır.

Mukavemet açısından civatalar kalite gruplarına ayrılmıştır. Civata ve somun mukavemet gurupları Çizelge 2.3'de verilmiştir. Her grup iki sayıdan oluşan sembollerle belirtilir. Birinci sayının 100 ile çarpımı, malzemenin N/mm² cinsinden minimum kopma mukavemetini (R_m), ikinci sayının birinci sayı ile çarpımı ise malzemenin yine daN/mm2 cinsinden akma sınırını (R_z) gösterir.

	Kalite Katsayıları									
	3.6	4.6	4.8	5.6	5.8	6.8	<m8.8< td=""><td>>M16</td><td>10.9</td><td>12.9</td></m8.8<>	>M16	10.9	12.9
$\begin{array}{c} R_m \\ (N/mm^2) \end{array}$	300	400	400	500	500	600	800	800	1000	1200
R_z (N/mm ²)	180	240	320	300	400	480	640	640	900	1080
Kopma Uzaması %A	25	22	14	20	10	8	12	12	9	8
Vickers Sert. HV	95	120	130	155	160	190	230	255	310	372
Brinel Sert. HB	90	114	124	147	152	181	219	242	295	353

Cizelge 2.3. Civata ve somun mukavemet sınıfları (RENDE 2000)

2.2. Civata Hesapları

2.2.1.Kuvvet iletimi

Bir civata somun bağlantısında uygulanan dönme momentinin sonucunda civata ekseni yönünde F_{ÖN} kuvveti meydana gelir (Şekil 2.4). Civatayı uzamaya zorlayan bu kuvvet civata dişlerinden somuna, oradan da somun oturma yüzeyinden bağlanan parçalara iletilerek bu parçaların birbirlerine doğru sıkıştırılması sağlanır. Eksenel sıkma kuvvetini meydana getirmek icin civata başı veya somuna bir anahtar yardımı ile

uygulanan sıkma momenti M_{CS} iki direnç momentinin toplamı olarak; $M_{cs} = M_1 + M_2$ şeklinde ifade edilir. Burada M_1 asıl sıkma momenti, M_2 somun veya civata başı ile bağlanan parçalar arasındaki sürtünme momentidir.

Şekil 2.4. Civatada öngerilme kuvveti

Bir kare profilli vidanın üzerinde bir somun elemanı düşünelim (Şekil 2.5). Vida etrafına helisel olarak sarılan profili açtığımızda bir dik üçgen meydana gelir. Bu yüzden somunun sıkılmasını işlemini eğik düzlemde bir yükün yukarıya doğru hareket ettirilmesi gibi kabul edebiliriz.. Somunun sıkılması için uygulanan F_{c} teğetsel kuvveti aynı zamanda yükü eğik düzlenmde yukarıya doğru hareket ettiren kuvvettir. Dişler arasında sürtünme kuvveti yokmuş gibi düşünürsek, bağlantıyı zorlayan F_{ON} kuvveti ile bu yüke karşı somunu döndürmek için uyguladığımız F_{c} kuvveti denge halindedir. Kuvvet vektörlerinin dengede olabilmesi için

$$F_{c} = F_{ON} \cdot tg\alpha \qquad (2.6)$$

olmalıdır.

Somunu döndürmek için gerekli moment ise

Mcs =
$$F_{ON}$$
. tga. $d_2/2$ (2.7)

dir.

Şekil 2.5. Kare profilli civatada kuvvetler (GEMALMAYAN 2009)

Sürtünmeyi de hesaba katarsak somunun dönmesi esnasında bu hareketi önlemeye çalışan dişler arasındaki sürtünme de, eğik düzlemdeki yük ile eğik düzlem arasındaki sürtünmeyle aynıdır. Bir somunun sıkılması halinde somuna etkiyen kuvvetler Şekil 2.5'de verildiği gibi olup eleman bu kuvvetler altında dengededir. Buna göre düşey kuvvetlerin denge denklemi yazılırsa;

 $F_{\ddot{O}N} = F_{N.} \cos \alpha - \mu . F_{N.} \sin \alpha = F_{N} (\cos \alpha - \mu . \sin \alpha)$ (2.8) Yatay kuvvetlerin denge denklemi yazılırsa;

 $F_{C} = F_{N} \cdot \sin\alpha + \mu \cdot F_{N} \cdot \cos\alpha = F_{N} \cdot (\sin\alpha + \mu \cdot \cos\alpha)$ (2.9) ifadesi elde edilir.

Bu iki denklemden

$$F_{\zeta} = F_{\ddot{O}N} \frac{\sin \alpha + \mu . \cos \alpha}{\cos \alpha - \mu . \sin \alpha}$$
(2.10)

bulunur.

Bu bağınıtını pay ve paydası 1/cosα ile çarpılırsa

$$F_{\zeta} = F_{\ddot{O}N} \frac{tan\alpha + \mu}{1 - \mu . tan\alpha}$$
(2.11)

Burada sürtünme açısı (ρ) olmak üzere μ = tan ρ değeri kullanılırsa

$$F_{\zeta} = F_{\ddot{O}N} \frac{tan\alpha + tan\rho}{1 - tan\alpha \cdot tan\rho}$$
(2.12)

Bu formülde tana.tanµ değeri çok küçük olduğu için ihmal edilebilir;

$$F_C = F_{\ddot{O}N} \tan (\alpha + \rho)$$
 (2.13)

Somun gevşetilirken sürtünme kuvveti yön değiştirecektir, yine denge denklemlerinden

$$F_{\zeta} = F_{\ddot{O}N} \tan \left(\alpha - \rho \right) \tag{2.14}$$

olacaktır. Çevresel kuvvetin ortalama çapa (d2) etkidiğinden hareketle;

$$M_{CS1} = F_{\ddot{O}N} \cdot \frac{d_2}{2} tan(\alpha + \rho)$$
 (2.15)

$$M_{CG1} = F_{\ddot{O}N} \cdot \frac{d_2}{2} tan(\alpha - \rho)$$
 (2.16)

bağıntıları elde edilir.

Şekil 2.6. Trapez ve üçgen vida profilinde açılar (GEMALMAYAN 2009)

Kare profilli civatalarda F_{ON} kuvveti profil düzlemine dik ve civata eksenine paraleldir. F_{ON} kuvveti doğrudan doğruya F_{C} kuvvetinin etkisiyle oluşur. Üçgen ve trapez profilli civatalarda ise F_{ON} kuvveti profil yüzeyine dik değil fakat civata eksenine paraleldir (Şekil 2.6). F_{ON} kuvvetinin profil düzlemine dik bileşenin hesaplanması gerekmektedir. Bu bileşen profil tepe açısından faydalanılarak hesaplanabilir. Vida profil tepe açısı β olduğuna göre, profil düzlemine dik olan kuvvet;

$$F_N' = \frac{F_{\ddot{O}N}}{\cos\frac{\beta}{2}}$$
(2.17)

Şekil 2.7. Vida profilinde F_N kuvvet bileşenleri (GEMALMAYAN 2009)

Üçgen ve trapez vidalarda normal kuvvet F_N , ayrıca tepe açısının yönüne göre bir eğim gösterir (Şekil 2.7). Buna göre düşey yöndeki denge denklemleri;

$$F_N \cdot \cos\frac{\beta}{2} \cdot \cos\alpha - \mu \cdot F_N \cdot \sin\alpha = F_{ON}$$
 (2.18)

$$F_N = F_{\ddot{O}N} \cdot \frac{1}{\cos\frac{\beta}{2} \cdot \cos\alpha - \mu \cdot \sin\alpha}$$
(2.19)

yatay düzlemdeki denge denklemleri

$$F_N \cdot \cos\frac{\beta}{2} \cdot \sin\alpha + \mu \cdot F_N \cdot \cos\alpha = F_{\zeta}$$
 (2.20)

$$F_{\zeta} = F_N\left(\cos\frac{\beta}{2}.\sin\alpha + \mu.\cos\alpha\right)$$
 (2.21)

Bu ifadede F_N yerine yazılırsa

$$F_{\zeta} = F_{\ddot{O}N} \cdot \frac{\left(\cos\frac{\beta}{2} \cdot \sin\alpha + \mu \cdot \cos\alpha\right)}{\left(\cos\frac{\beta}{2} \cdot \cos\alpha - \mu \cdot \sin\alpha\right)}$$
(2.22)

pay ve payda $cos \frac{\beta}{2}$ 'ye bölünürse

$$F_{\zeta} = F_{\ddot{O}N} \cdot \frac{\left(\frac{\sin\alpha + \frac{\mu}{\cos\frac{\beta}{2}} \cdot \cos\alpha}{\cos\frac{\beta}{2}}\right)}{\left(\frac{\cos\alpha - \frac{\mu}{\cos\frac{\beta}{2}} \cdot \sin\alpha}{\cos\frac{\beta}{2}}\right)}$$
(2.23)

Denklemi basitleştirmek için $\mu' = \frac{\mu}{\cos{\frac{\beta}{2}}}$ yazılırsa

$$F_{\zeta} = F_{\ddot{O}N} \cdot \frac{(\sin\alpha + \mu'.\cos\alpha)}{(\cos\alpha - \mu'.\sin\alpha)}$$
(2.24)

olarak elde edilir.Pay ve payda $\frac{1}{\cos \alpha}$ ile çarpılıp $\mu' = t \alpha n \rho'$ yazılırsa

$$F_{\zeta} = F_{\ddot{O}N} \cdot \frac{(tan\alpha + tan\rho')}{(1 - tan\alpha \cdot tan\rho')}$$
(2.25)

tana.tanp' ifadesi çok küçük olduğu için ihmal edilirse

$$F_{C} = F_{\ddot{O}N} \tan \left(\alpha + \rho' \right)$$
 (2.26)

elde edilir.

 $\mu' = tan\rho'$ ifadesi vidanın tepe açısına bağlı sürtünme açısı değeridir. Sürtünme kuvveti tepe açısına bağlı olarak değişmektedir. Kare vidadaki $\rho = arctg\mu$ ile üçgen profilli vidadaki $\rho' = arctg\mu'$ birbirinden farklıdır. Daha önceki denklemlerdeki $\mu' = \frac{\mu}{cos\frac{\beta}{2}}$ ifadesindeki β değeri yerine metrik civatalarda 60° alınabilir. Böylece

$$\mu' = \frac{\mu}{0,866} = 1,15\mu \tag{2.27}$$

elde edilir. Civatayı sıkmak için gereken moment

$$M_{CS1} = F_{\ddot{O}N} \cdot \frac{d_2}{2} tan(\alpha + \rho')$$
 (2.28)

Civatayı gevşetmek için gereken moment

$$M_{CG1} = F_{\ddot{0}N} \cdot \frac{d_2}{2} tan(\alpha - \rho')$$
 (2.29)

Civatayı sıkmak için gerekli momenti sadece yukarıdaki formül ile hesaplamak doğru değildir. Civata veya somun tabanındaki sürtünmelerin de hesaba katılması gerekir. Civata somun bağlantılarında somun altındaki sürtünme bilezik şeklinde olan bir yüzeyde meydana gelir (Şekil 2.8).

Şekil 2.8. Somun altındaki sürtünme yüzeyi
Öngerilme kuvvetinin somun oturma yüzeyinin ortalama çapına etkidiği kabul edilirse $r_s = \frac{d_d + d_i}{4}$ alınır. Standart civatalarda d_d anahtar ağzına eşittir. Somun altındaki sürtünme momenti;

$$M_{CS2} = \mu_S. F_{\ddot{O}N}. r_s \tag{2.30}$$

olarak hesaplanır. Sürtünme katsayıları için yaklaşık değerler Çizelge 2.4'de verilmiştir.

Cizelge 2.4. Son	un ile bağlanan	parçalar arasın	da sürtünme l	katsayıları	(RENDE 2000)
, 0	0	1 ,		5	()

	1.Yüzey Civata	a başı veya so	2. Yüzey sıkıştırılan parçalar	
	yüzeyi			ve somun vidası
	Çelik	Çelik	Çelik	
	siyahlaş.	kadmiyum	çinko	
	Fosfatlanmış	kap. 6 µm	kap.6 µm	
	0,130,19	0,080,16	0,100,18	Çelik Haddelenmiş
	0,100,18	0,080,16	0,100,18	Çelik GG, Tornalanmış,
				Frezelenmiş
	0,160,22	0,080,16	0,100,18	Çelik GTS, taşlanmış
	0,080,16	0,120,20		Çelik kadmiyum kap. 6 µm
Hafif		0,120,16		Çelik kadmiyum kap. iç vida
Yağlanmış	0,100,18		0,160,2	Çelik çinko kap. 6 µm
			0,100,18	Çelik çinko kap. iç vida
	0,120,20			Çelik soğuk şek. Fosfatlanmış
	0,100,18			Çelik talaşlı işlenmiş
				Fosfatlanmış
	0,080,20			Al alaşımları
	0,080,16	0,160,24		Çelik kadmiyum kap. 6 µm
Kuru	0,080,14	0,120,16		Çelik kadmiyum kap. iç vida
	0,100,18		0,200,30	Çelik çinko kap. 6 µm
	0,080,16		0,120,20	Çelik çinko kap. iç vida
Yapıştırıcı	0,180,30			Çelik GG. GTS, talaş kald.
ile				işlenmiş

2.2.2. Toplam sıkma momenti

Sürtünme kuvvetleri de hesaba katılarak F_{ÖN} öngerilme kuvvetini elde etmek icin somuna uygulanması gereken toplam sıkma momenti

$$M_{CST} = M_{CS1} + M_{CS2} = F_{\ddot{O}N} \left[\frac{d_2}{2} tan(\alpha + \rho') + \mu_s \cdot \frac{d_s}{2} \right]$$
(2.31)

Toplam gevşetme momenti ise

$$M_{CGT} = F_{\ddot{O}N} \left[\frac{d_2}{2} tan(\alpha - \rho') + \mu_s \cdot \frac{d_s}{2} \right]$$
(2.32)

Bu ifadede sağ taraf d ile çarpılıp bölünürse

$$M_{CGT} = F_{\ddot{O}N} \cdot d \left[\frac{d_2}{2d} tan(\alpha - \rho') + \mu_s \cdot \frac{d_s}{2d} \right]$$
(2.33)

ifadesi elde edilir. Bu ifadede parantez içinde yer alan sayısal değer boyutsuz bir değerdir. Bu kısma boyutsuz k_0 değerini atarsak, moment ifadesi;

$$M_{CST} = F_{\ddot{O}N} \cdot d \cdot k_0 \tag{2.34}$$

şeklini alır. Standart metrik civatalar için $\frac{d_2}{d} \cong 0.9$, $\frac{d_s}{d} \cong 1.4$ ve $\mu \cong 0.12...02$ alınabilir. Bu değerlere bağlı olarak $k_0 \cong 0.18...022$ arasında değişir. Ortalama olarak $k_0 = 0.2$ alınırsa;

$$M_{CST} = 0,2. F_{\ddot{O}N}.d$$
 (35)

olarak hesaplamak çoğu zaman yeterli olacaktır. (GEMALMAYAN 2009)

2.3 Öngerilme Teorisi

İşletme ortamında karşılaşılan kuvvetlerin civataların birleştirdiği parçaları arayüzünden birbirinden ayırmaması için civata bağlantıları belli bir öngerilme kuvveti oluşturacak şekilde sıkılırlar. Civataya uygulanan montaj öngerilme kuvvetine F_{ON} dersek, bu kuvvet nedeniyle civatada σ_c kadar bir gerilme kuvveti oluşacaktır. Civata bu gerilme altında Δ_{lc} kadar uzayacak, bağlanan parçalar ise Δ_{lp} kadar kısalacaktır. İşletme sırasında bağlantıya ek bir kuvvet uygulandığı zaman (F_{iş}), bağlantı tekrar uzamaya zorlanacak olursa, civata üzerinde σ'_c gerilmesi meydana gelecek ve civata Δ'_{lc} kadar daha uzayacaktır (Şekil 2.9).

Şekil 2.9. İşletme kuvveti altında civata davranışı

Bunun tersi ise bağlantıda zorlanan parçalar için geçerlidir. Bu parçalar üzerindeki yük azalacak yani eski boylarına yaklaşacaklar ve Δ'_{lp} kadar uzayacaklardır. İki parçayı birleştiren öngerilme kuvveti ise F'_{ON} kadar gerileyecektir. Bu deformasyon durumu tıpkı bir yay karakteristiği göstermektedir. Elastik bölgede kalmak şartı ile Hooke kanununa göre öngerilme kuvveti ile bağlantıdaki bu şekil değiştirmelerini bir gerilme şekil değiştirme diyagramında göstermek mümkündür (Şekil 2.10).

Şekil 2.10. Civata ve parça için kuvvet-şekil değiştirme grafiği

Civataların rijitliğine C_c parçanınkine C_p dersek $F_{ON} = C_c \cdot \Delta_{lc} = C_p \cdot \Delta_{lp}$ olduğu görülür. Daha önce belirttiğimiz gibi işletme kuvveti altında civatalar Δ'_{lc} kadar daha uzarken parçalar Δ'_{lp} kadar uzayacaktır ancak bu uzama eski boylarına yaklaşma şeklinde olacaktır. Yani civata ve somun arasındaki mesafede herhangi bir değişiklik sözkonusu değildir. Bu durumda $\Delta'_{lc} = \Delta'_{lp}$ denilebilir.

Civata ve parçalara ait kuvvet-şekil değiştirme grafiğini tek bir grafik altında birleştirirsek; civatayı zorlayacak en büyük kuvvetin öngerilme kuvveti F_{ON} ile işletme kuvetinin bir parçası olan F_z 'den oluştuğunu, parçaya etki eden geri kalan kuvetin ise F_{ON} öngerilme kuvvetinden işletme kuvvetinden civataya gelen F_b 'nin çıkarılmasıyla hesaplanabileceği görülür.

İşletme kuvveti sabit bir kuvvet olmayıp titreşimli yada değişken bir kuvvet olabilir. Bu durumda F_z kuvveti sıfır ile F_z arasında değişecek ve civata da $F_{ON} + F_z/2$

ortalama kuvveti ile eklenen $F_z/2$ kuvvetleri arasında zorlanacaktır (Şekil 2.11). Grafiklerdeki üçgen benzerliğinden yola çıkarsak civata ve parçanın rijitliği için;

$$C_c = tg \propto = \frac{F_{\bar{O}N}}{\Delta_{lc}} = \frac{F_z}{\Delta l_c} = \frac{1}{\delta_c}$$
 (2.36)

$$C_p = tg\beta = \frac{F_{\bar{O}N}}{\Delta_{lp}} = \frac{F_b}{\Delta l_p} = \frac{1}{\delta_p}$$
(2.37)

yazılabilir. $\Delta_{lc}^{'} = \Delta_{lp}^{'}$ olduğundan işletme kuvveti;

$$F_{is} = F_z + F_b = C_c \cdot \Delta l'_c + C_p \cdot \Delta l'_p = \Delta l' \cdot (C_c + C_p)$$
(2.38)

işletme kuvvetinin ne kadarının civatayı ne kadarının da parçayı zorlayacağı ise aşağıdaki formül ile bulunabilir.

$$\varphi = \frac{F_z}{F_{i_s}} = \frac{C_c \cdot \Delta l'_c}{\Delta l' \cdot (C_c + C_p)} = \frac{C_c}{C_c + C_p}$$
(2.39)

Bu formülde görüldüğü gibi civatanın daha az rijit parçanın ise daha çok rijit olması bağlantının emniyetini arttırmaktadır. Civataya gelecek maksimum kuvvet

$$F_{mak} = F_{\ddot{O}N} + F_z \tag{2.40}$$

Geri kalan öngerilme kuvveti ise

$$F_{\ddot{O}N} = F_{\ddot{O}N} + F_b$$
 (2.41)

Şekil 2.11. Civata rijitliği ile Fz ilişkisi

Civataların rijitliğinin hesaplarken $\sigma = E \cdot \epsilon$, $\sigma = \frac{F}{A}$, $\varepsilon = \frac{\Delta l}{l}$ ifadelerinden faydalanarak

$$C_c = \frac{F}{\Delta l_c} = \frac{\sigma . A_c}{\varepsilon . l_c} = \frac{E . \varepsilon . A_c}{\varepsilon . l_c} = \frac{E . A_c}{l_c} = \frac{1}{\delta_c}$$
(2.42)

olarak hesaplanabilir.

Sıkılan parçaların rijitliklerinin hesabı oldukça karışıktır. Sıkılan parçalarda, öngerilme etkisinde elastik deformasyona uğrayan malzeme bölgesini ve gerilme dağılımını tam olarak tesbit etmek oldukça zordur. Sıkıştırılan parça ince cidarlı bir kovan şeklinde kabul edilirse ise rijitlik;

$$C_p = \frac{E.A_p}{l_p}$$
, $A_p = \frac{\pi}{4} (D_A^2 - D_B^2)$ (2.43)

bağıntısıyla hesaplanabilir.

Fakat her zaman birbirine bağlanan parçalar bir kovan şeklinde değildir. Çeşitli çalışmalarla deformasyona uğrayan kesit alanının koni yada parabol oluşturduğu tespit edilmiştir.(Şekil 2.12). Bu durumlar için aşağıdaki formüller kullanılabilir.

Şekil 2.12. Civata bağlantılarında basıya zorlanan kısımda kesitler (BABALIK 1997)

- dk: Yaklaşık anahtar açıklığı
- DA: Basıya zorlandığı varsayılan silindirin dış çapı
- D_B: Delik çapı olmak üzere

a) İnce cidarlı silindir

b) Basıya zorlanan kısımlar	bölgesi içinde	
		(2.44)
c) Basıya zorlanan kısımlar	bölgesi içinde	
_	_	(2.45)

k faktörü çeliklerde 10, dökme demirlerde 8, alüminyumda 6 alınabilir.

2.3.1. Efektif Boy

Çekme kuvvetleri civataya boydan boya uygulanamaz. Somunun alt yüzü ile civata başının alt yüzeyi arasında uygulanır. Serbest uçlarda 0 gerilme görülür. Kafa ve diş kısımlarında bazı gerilme dilimleri görülür. Civatanın montaj boyu boyunca saf bir silindir gibi düşünmek mümkün değildir. Bu gerilme dilimlerini göz önünde bulundurarak, tam civata boyu ile montaj boyu arasındaki bir değeri verimli bir boy değeri verecek şekilde seçmemiz gerekmektedir.(Şekil 2.13)

Şekil 2.13. Civatalarda efektif boy (BICKFORD 1995)

Bilindiği üzere civatadaki gerilme civata başının gövdeye birleştiği ve ilk dişlerin somuna temas ettiği noktalarda maksimum, civatanın her iki serbest ucunda da 0'dır. Bu bölgeler arasındaki gerilim düşüşünün doğrusal olduğu kabul edilirse civata kafasının yarıya kadarının gövde ile aynı gerilmeye sahip olduğunu, geri kalan kısmının da 0 gerilmeye sahip olduğunu söyleyebiliriz. Benzer şekilde somunun diş kısmındaki dişlerin yarısının gerilmesinin gövde ile aynı miktarda, kalan kısmının ki ise 0'mış gibi kabul edebiliriz.

$$L_{ef} = L_{Somun} / 2 + L_{Civata Basi} / 2$$
 (2.46)

denilebilir.

2.4. Civata Bağlantılarında Gerilmeler

2.4.1. Çekme altında gerilme dağılımı

Civata bağlantısını saf çekme kuvvetine maruz bırakırsak, eğer civatamız mükemmel şekilde simetrikse, kafa ve somun kısmı parça-vida eksenlerine tamamen dikse, bağlantı yüzeyleri düzgün ve paralelse Şekil 2.14'deki gerilme dağılımı elde edilir.

Şekil 2.14 Çekme kuvveti altında gerilmeler (BICKFORD 1995)

Şekil 2.15 yüklenmiş bir civata ve bağlantıda, gerilimin yönelmesi konusunda bir fikir vermektedir. Bu şekildeki gerilmeler dikkatle incelendiğinde, gerilim odaklanmasının civatadaki ortalama gerilmenin çok ötesine kadar aştığı üç adet tehlike bölgesine işaret ettiği görülür. Bu noktalar civata başının gövdeye bağlandığı yuvarlatma kısmı, dişlerin gövdeye katıldığı bölge ve ilk diş temas noktasıdır. Genellikle civata ilk olarak bu noktalardan hasar görmektedir.

Şekil 2.15 Civata-Flanş bağlantısında gerilme dağılımı (BICKFORD 1995)

Standart hesaplamalarda genellikle gerilmenin civatanın serbest uçlarında sıfır olduğu ve daha sonra civata başından uniform olarak civatanın gövdesi boyunca arttığını varsayarız. (Şekil 2.15). Benzer bir dağılım dişli kısımda da görülür. Ancak burada diş dibi kesit alanı daha küçük olduğu için gerilmeler nispeten daha büyüktür.

General Dynamics Forth Worth da yapılan sonlu eleman analizleri ise aslında daha karmaşık bir dağılımın varlığını ortaya koymuştur. Civata ekseni boyunca ölçülen çekme gerilmesinin aslında şekil 2.16'dakine benzer bir dağılım gösterdiğini hesaplamışlardır. Yine civata ekseni boyunca birbirine paralele bazı eksenlerde alınan ölçümlerin sonuçlarında diş dibi ve civata başı-gövde birleşimi gibi kısımlardaki gerilmenin ortalamanın 2-4 katına kadar çıktığı saptanmıştır. (BICKFORD 1995)

Şekil 2.16 Civatada bazı eksenler doğrultusunda çeki-bası gerilmeleri

İşleri daha da karmaşıklaştırmak gerekirse aslında yukarıda saptanan değerler montaj boyu-civata çapı oranı 4:1 olan civatalarda geçerlidir. Kısa ve kalın civatalardaki dağılım ise daha çok şekil 2.17'dekine benzerdir. Her iki şekilden de anlaşılacacağı gibi ortada uniform bir dağılım sözkonusu değildir.

Şekil 2.17 Kısa-kalın civatalarda çeki-bası gerilmeleri (BICKFORD 1995)

2.5. Bağlantıdaki Gerilmeler

2.5.1. Civata-Bağlantı arasındaki temas gerilmeleri

Civata kafası ve bağlantı arasındaki temas basıncı üniform değildir. Aynı şekilde somun ve bağlantı arasındaki de üniform değildir. Şekil 2.18'de temas basıncı dağılımının, yükleme başlangıcında somun ve civata kafasının temas yüzeylerinin mükemmel şekilde bağlantı parçalarına paralel olduğu kabul edilmiş olsa da yinede uniform olmadığı görülüyor. Gerçek hayattaki uygulamalarda bu paralellik kolaylıkla sağlanamayacağı için dağılımın şekildekinden daha düzensiz olacağı söylenebilir.

Şekil 2.18. Civata-Flanş arasındaki temas basıncı dağılımı (BICKFORD 1995)

Civata kafası yada somunun, bağlantı parçaları ile oluşturduğu temas basıncı dağılımı, montaj boyunca yüklenen bir civatanın potansiyel enerjisini tutmasıyla yakın ilişkilidir. Basıncın aşırı olması civata yada somunun kendisini bağlantıya gömmesine ve enerjisinin bir kısmını yaymasına sebep olacaktır. Çizelge 2.5'de akma sınırının %75'ine kadar sıkılan bir gurup civatada tespit edilen temas basınçları görülüyor. Verilerden görüleceği üzere pul yada flanşlı civata kullanmak temas basıncını belirgin şekilde düşürmektedir.

Cizel	lge 2.5.	Bazı	civata	ebatları	icin	temas	basinci	değerleri	(BI	CKF	ORD	1995)
5 -	0				3				`	-	-	,

Civata	Civata	Civata Başı	Temas Basıncı
Kalitesi	Ebadı		(N/mm2)
10-9	M10	Flanşlı	250
	M16		275
10-9	M10	Düz Altıgen	360
	M16		650
10-9	M10	Düz Altıgen	190
	M16	+ Pul	230
12-9	M10	Düz Altıgen	440
	M22		900
12-9	M10	Düz Altıgen	200
	M22	+ Pul	350

Şekil 2.19 Bağlanan flanş parçalarında gerilme dağılımı (BICKFORD 1995)

2.5.2. Bağlantı parçaları arasındaki gerilmeler

Civata elemanlarında görülen düzensiz gerilme seviyeleri sonuç olarak bağlantı parçalarına da yansır. Şekil 2.19'da fiçi şeklinde yayılan eşdeğer basınç eğrileri görülüyor. Dikkat edilirse en içteki değer ile en dıştaki değer arasında 7 kat kadar fark görülmektedir. Bu durum özellikle contalı bağlantılarda sorun oluşturabilmektedir. Yapılan bir dizi deney sonucunda Şekil 2.20'deki grafik elde edilmiştir. 2 yada 3 civata çapı mesafede temas basıncının 0'a indiği görülüyor. R değeri delik çapı-somun temas çapı oranıdır. Ancak tamamen düzgün basınç dağılımı elde etmek pratik olarak mümkün değildir. Daha büyük civata kullanmak yada civataları birbirine daha yakın konumlamak en yaygın çözümdür. Ancak fazla civata kullanımı flanşı zayıflatabileceği gibi civataları sıkışık konumlamakta sıkılma işlemini güçleştirecektir. (BICKFORD 1995)

Şekil 2.20 Delikten uzaklaştıkça basınç değişimi (Delik yarıçapı = 1.0) (BICKFORD 1995)

2.6. Kombine Yükler Altında Civata Dayanımı

Genellikle civatanın kesme dayanımından çok akma dayanımıyla ilgilenilir. Ancak dikkat edilmesi gereken diğer bir hususta akma dayanımı değerinin civatanın burulma yada kesme kuvvetiyle karşılaştığı zaman azalacağı gerçeğidir. Bir civatayı sıktıktan hemen sonra çekme gerilmesiyle yüklersek civatanın akma sınırının çok altında bir değerde kırıldığını görürüz. Burulma momenti civatanın mukavemetinin bir kısmını alıp götürmüştür.

Şekil 2.21. Çekme ve Torklama durumunda civatadaki gerilmeler (FISHER 1987)

Eğer bir civatayı sıkarsak o civatanın belli bir değerde akmaya başlıyacağını görürüz. Sıkma işlemi bittikten sonra takım civatadan ayrılınca rahatlama devreye girerek burulma gerilmesini yavaça ortadan kaldırır. Eğer bu durumda çekme gerilmesi uygularsak ilk seferde saptadığımız akma gerilmesi değerinden daha üst değere kadar dayandığını görürüz. (Şekil 2.21)

Civata bağlantılarındaki gerilmeleri hesaplamak için mukayese gerilmesi hesabına ihtiyaç duyulmaktadır. Mukayese gerilmesi hesabı da şekil değiştirme hipotezi yardımıyla yapılır. Bunun sebebi civata somun bağlantılarındaki karışık geometriler, dişlerin sebep olduğu çentik etkisi faktörüdür. Öngerilmeli civatalar, çeki kuvvetinin yanısıra burulmaya da zorlanmaktadır. Eğer bağlantı dinamik yük altında çalışıyorsa o zaman mukayese gerilmesi değerleri çok düşük seçilmelidir. Ayrıca ön gerilme kuvveti değeri dinamik işletme kuvvetinden çok büyük seçilerek, gerilme genliği azaltılabilir. Bu sayede emniyetli bağlantılar gerçekleştirilebilir.

Civata bağlatılarında civata şaftı montaj öngerilme kuvveti F_{ON} tarafından çekme kuvveti ile zorlanırken döndürme momentinin dişler arasındaki sürtünmeyi yenmeyi sağlayan bölümü $M_{CS} = F_{ON} \cdot \frac{d_2}{2} tan(\alpha + \rho')$ tarafından da burulma kuvveti ile zorlanmaktadır. Montajda uygulanacak öngerilme kuvveti değeri mutlaka civatanın çalışma şartlarında karşılacağı işletme kuvveti F_{IS} 'den büyük olmalıdır. Çünkü civata bağlantısında zamanla meydana gelecek oturma olayından dolayı öngerilme kuvvetimizde bir miktar azalma meydana gelecektir.

Civatalardaki çeki gerilmesi hesabı $\sigma_{\zeta} = \frac{F_{\bar{0}N}}{A}$ formülüyle hesaplanabilir. Burada çekme gerilmesine zorlanan kesit alanı hesaplanırken diş dibi kesitini almak en emniyetli yötem olarak görülebilir. Ancak dişlerin kendisinin de bir miktar yük taşımaya katkı sağladığı göz önüne alınarak gerilme kesiti denilen değer kullanılabilir. Bu değer

$$A_{S} = \frac{\pi}{4} \left[\frac{(d_{3} + d_{2})}{2} \right]^{2}$$
(2.47)

formülüyle hesaplanabilir. Buradan

$$\sigma_{\zeta} = \frac{F_{\ddot{O}N}}{A_s} \tag{2.48}$$

olarak hesaplanır. Civataya uygulanan sıkma momentinin oluşturacağı burulma gerilmesi ise

$$\tau = \frac{M_{12}}{W_p} = \frac{F_{\ddot{O}N}\left(\frac{d}{2}tg(\alpha + \rho')\right)}{\pi \frac{d_{\ddot{S}}}{16}}$$
(2.49)

F_{ÖN}'nün oluşturduğu çekme gerilmesi. $\sigma_{\zeta} = \frac{F_{ON}}{A}$ buradan $F_{ON} = \sigma_{\zeta} \cdot A = \sigma_{\zeta} \cdot \frac{\pi}{4} \cdot d_{S}^{2}$ yazılırsa

$$\tau = \frac{\sigma_{\zeta} \cdot \pi \cdot d_{S}^{2} \cdot d_{2} \cdot tg(\alpha + \rho')}{\pi \cdot \frac{d_{S}^{3}}{16}}$$
(2.50)
$$\tau = 2 \cdot \sigma_{\zeta} \cdot tg(\alpha + \rho') \frac{d_{2}}{d_{s}}$$
(2.51)

Şekil değiştirme hipotezi yardımıyla Civata şaftında meydana gelecek eşedeğer mukayese gerilmesi

$$\sigma_{muk=} \sqrt{\sigma^{2} + 3.\tau^{2}}$$
(2.52)
$$\sigma_{muk=} \sigma_{\zeta} \sqrt{1 + 3[2.tg(\alpha + \rho').d_{2}/d_{s}]^{2}}$$
(2.53)

olarak hesaplanabilir.

Civata hesabı yapılırken malzemeden en iyi şekilde yararlanılmaya çalışılmalıdır. Malzemeden azami ölçüde faydalanabilmek için civatalara uygulanacak öngerilme kuvvetinin ouşturacağı mukayese gerilmesinin civata malzemesinin akma sınırının %90'ına denk gelecek şekilde uygulanılması gerekmektedir. Akma sınırına ulaşıncaya kadar kalan %10'luk gerilme değeri de işletme altında karşılaşılan kuvvetleri hasar görmeden karşılamaya yetecektir. Bu öneriye göre şekil değiştirme hipotezine göre mukayese gerilmesi $\sigma_{muk=} \sqrt{\sigma_{\zeta}^2 + 3.\tau^2} \leq 0.9.\sigma_{ak}$ olmalıdır. Bu eşitliğin her iki tarafi çeki gerilmesine bölünürse

$$\frac{\sigma_{muk}}{\sigma_{\zeta}} = \sqrt{\left(\frac{\sigma_{\zeta}}{\sigma_{\zeta}}\right)^2 + 3.\left(\frac{\tau}{\sigma_{\zeta}}\right)^2}$$
(2.54)

$$\sigma_{\zeta} = \frac{\sigma_{muk}}{\sqrt{1+3.\left(\frac{\tau}{\sigma_{\zeta}}\right)^2}} = \frac{\sigma_{muk}}{\sqrt{1+3.\left[\frac{4.tg(\alpha+\rho')}{1+\frac{d_2}{d_2}}\right]^2}}$$
(2.55)

sonucu elde edilir. $\sigma_{muk} \leq 0.9$. σ_{ak} olması istendiğinden gerekli montaj kuvveti

$$F_{M maks} = \sigma_{\zeta} A_{s} = \frac{0.9 \sigma_{ak} A_{s}}{\sqrt{1+3 \left[\frac{4 t g(\alpha + \rho')}{1 + d_{3}/d_{2}}\right]^{2}}}$$
(2.56)

değerini aşmamalıdır.

2.7. Civatalarda Öngerilme Kuvveti Kaybı ve Sebepleri

Montajlamayı gerçekleştiren civataya öngerilmiş civata adı verilir.Sıkılan ciatada meydana gelen kuvvete de F_{ÖN}, öngerilme kuvveti denir. Aslında bu tanım literatürde civatadaki herhangi bir zamandaki gerilmeyi tanımlamak için kullanılsada tam olarak doğru değildir. Bu sebeple bir civata ilk sıkıldıktan hemen sonraki gerilmesine başlangıç öngerilmesi demek daha uygun olacaktır. Civata sıkıldıktan sonra rahatlayarak yada yakınındaki diğer civataların sıkılmasından etkilenerek bir kısım öngerilmesini yitirecektir. Bu sebeple en son öngerilmesine kalıcı öngerilme demek daha doğrudur.

Şekil 2.22 Civatada Tork-Enerji ilişkisi

Herhagi bir civata bağlantısı sıkılırken belli bir moment değerine karşılık gelen civatadaki uzama, parçalardaki kısalma ve somunun dönme açısı değerleri ölçüldüğünde Şekil 2.22'deki diagrama benzer bir diagram elde edilecektir. Civatayı sıktıkça iş yapmış oluruz ve yapılan iş Tork-Somun Dönüş grafiğinin altındaki alana eşittir. Teorik olarak civatayı sıkarken verdiğimiz işin hepsinin civatada potansiyel enerjiye dönmesini bekleriz. Ancak bu mümkün değildir.

Tipik olarak yapılan işin %90'ı somun dişleri, somun alt yüzeyi-bağlantı parçası arasındaki sürtünme kuvvetleri sebebiyle ısıya dönüşür. Bu değerin yaklaşık %50 kadarı somun dişlerinde, % 40 kadarı da somun alt yüzeyi-bağlantı parçası arasındaki sürtünmelere harcanmıştır. Sonuç olarak sadece %10'luk bir kısım potansiyel enerji olarak civatada saklanmaktadır.

Bir civata bağlantısındaki civatalardaki öngerilme ile montaj elemanların arasındaki montaj kuvveti arasında eş ve ters yönlü etki-tepki bulunmaktadır. Ancak bazı faktörler bu etkinin farkı şekillerde tepki olarak dönmesine sebep olabilmektedir. Örneğin bağlantımızda bulunan üst bağlantı elemanına açılan delik küçük açılmış olsun. Böylece civata gövdesi deliğe pres geçmiş olacaktır. Şekil 2.23. Bu durumda civatakaki öngerilme kuvveti ile montaj kuvveti birbirine eşit olamayacaktır. Zira öngerilme kuvvetinin bir kısmı civatanın dar delik boyunca kendine yol açması sırasında harcanmıştır. Görüldüğü üzere moment değeri istenildiği kadar mükemmel hesaplansın ve hassas aletlerle uygulansın, sonuçta delik çapının küçük olması arzu edilen montaj kuvvetinden daha az bir kuvvet elde etmemize sebep olacaktır. Şekil 2.24'de görüldüğü gibi ağır bir kapağın gövdeye montajlandığını düşünelim. Ancak her iki parça birbirine henüz temas etmemişse ve biz civatayı sıkmaya başlamışsak bu durumda civatadaki ön yüklemenin bir kısmı kapağın ağırlığını yukarıya doğru kaldırmaya harcanacaktır. Veya bir boru bağlantısında boruların birbirini tam karşılamadığını varsayalım. Bu durumda da benzer şekilde ön gerilmenin bir kısmı deliklerin birbirini karşılaması için montaj parçalarını hareket ettirmeye harcanacaktır.

Şekil 2.23. Civata-Delik etkileşimi

Şekil 2.24 Montaj elemanlarının etkisi (BICKFORD 1995)

2.7.1. Civatalarda montaj sonrası öngerilme kayıpları

Sıkılma esnasında oluşan öngerilme kayıplarının yanısıra sıkıldıktan sonra da civatalarda bir miktar öngerilme kaybı görülebilmektedir. Genel olarak kısa zaman öngerilme kaybı denilen bu olaya bazen aşırı yük altında akma sınırını aşan bir eleman sebep olabileceği gibi (conta), vidanın yükü taşıyan ilk dişleri de sebep olabilir.

2.7.1.1. Civatalarda montaj sonrası öngerilme kayıpları sebepleri

Civata dişlerinin temas yüzeyleri, montaj elemanlarının temas yüzeyleri, aradaki contalar, parlatılmış olsa da hiçbir zaman kusursuz düzlükte olamazlar. Mikroskopla bakıldığında bir dizi tepe ve çukur görülür. (Şekil 2.25)

Şekil 2.25. Civatada temas yüzeylerinde pürüzlülük

Bağlantı elemanları ilk yüklendiğinde birbirlerine metal yüzeylerdeki yüksek noktalarla temas ederler. Gerçekte belli bir oranda diş temas alanını sağladığı sürece çok küçük bir civata bile muazzam yüzey basınçlarına dayanabilmektedir. Ancak noktasal temasların oluştuğu kısımlarda temas alanı görece küçük olduğu için buradaki pürüzler yeterli temas alanına ulaşacak seviyeye kadar plastik deformasyona uğrayarak ezilirler.

Şekil 2.26 Plastik deformasyondan dolayı öngerilme kuvvetindeki azalma

Benzer şeyler bağlantı elemanlarının temas yüzeylerinde de gözlenir. Ancak buralarda temas alanı daha büyük olduğu için plastik deformasyon dişlerdekine göre küçük kalır. Vida dişleri arasındaki oturma , civatanın mukavemet sınıfına bakılmaksızın 5 µm alınabilir. Pürüz ezilmesi yeni parçalarda kullanılmış parçalara göre daha fazla görülür. Önlemek için civatalar sıkılıp gevşetilir, sonra tekrar sıkılır.

Temas yüzeylerinde gerçekleşen plastik deformasyon sonucu oluşcak öngerilme kuvveti kaybı miktarı, %2 ila %10 arasında değişebilmektedir. Bu miktarı hesaplanmanın kesin bir yolu olmamakla birlikte özellikle titreşimli ortamlarda çalışcak bağlantılar için mutlaka hesaplamalarda göz önünde bulundurulması gerekmektedir. Metal-Metal olmayan öngerilmeli civata bağlantılarında veya arada conta gibi farklı malzemeler bulunduran bağlantılarda plastik deformasyonun miktarının saptayabilmek için mutlaka deneyler yapılması önerilmektedir. Metal-Metal temaslı öngerilmeli civata bağlantılarında ise yaklaşık olarak aşağıdaki formülle hesaplanabilir. (NASA 1998)

$$\Delta F_{\ddot{0}n} = 0.05 x F_{\ddot{0}n} \tag{2.57}$$

Pürüzlerin ezilmesiyle oluşan plastik deformasyonlara bağlı olarak gerçekleşen öngerilme kuvveti kaybına ΔF_{On} (F_Z) dersek; Şekil 2.26'dan anlaşılacağı şekilde,

$$\frac{\Delta F_{\ddot{0}n}}{f_Z} = \frac{F_{\ddot{0}n}}{f_c + f_p} \tag{2.58}$$

$$f_c = F_{\ddot{0}n} \delta_c \tag{2.59}$$

$$f_p = F_{\ddot{0}n}.\,\delta_p \tag{2.60}$$

$$\frac{\Delta F_{\ddot{0}n}}{f_z} = \left(\frac{1}{\delta_c + \delta_p}\right) \tag{2.61}$$

$$\Delta F_{\ddot{0}n} = f_z \cdot \left(\frac{1}{\delta_c + \delta_p}\right) \frac{\delta_p}{\delta_p}$$
(2.62)

$$\varphi_k = \frac{\delta_p}{\delta_c + \delta_p} \tag{2.63}$$

$$\Delta F_{\ddot{0}n} = f_{z.}\varphi.\frac{1}{\delta_p}$$
(2.64)

formülüyle hesaplanabilir. Tecrübeye dayalı olarak montajda gerçekleşebilecek öngerilme kuvveti kayıpları Çizelge 2.6'da verilmiştir.

		£	-11-				
	$f_Z \mu m$ olarak						
Sıkılan parça	İşletme kuvveti	F _A civata ekseni	İşletme kuvveti	F _Q civata enine			
sayısı (vida	yönünde ve sıkış	tırılan parçaların	yönünde ve sıkış	tırılan parçaların			
dahil)	yüzey pürüzlülüğ	ğü	yüzey pürüzlülüğ	ğü			
	$\sqrt{R_Z 25}$	$\sqrt{R_Z 6,3}$	$\sqrt{R_Z 25}$	$\sqrt{R_Z 6,3}$			
2	13	10	20	13			
3	16	12	28	16			
4	20	14	35	20			
5	25	16	42	25			
6	30	18	50	30			

Çizelge 2.6. Tecrübeye bağlı olarak f_z 'nin yaklaşık değerleri (RENDE 2000)

Flanş kalınlığına ve civata çapına bağlı olarak f_z değerini hesaplamamıza yarayan başka bir formül ise aşağıda verilmiştir. (STEINHILPER 1986)

$$f_z = 3,29 \left(\frac{l_p}{d}\right)^{0,34} 10^{-3} \text{ mm}$$
 (2.65)

Civata bağlantısında kullanılan montaj boyu ve civatanın nominal çapına bağlı olarak oluşacak fz'nin yaklaşık değeri Çizelge 2.7'de verilmiştir.

Çizelge 2.7. Montaj boyu ile nominal çap oranına bağlı f_z değerleri (DECKER)

L_X/d	1	2	3	4	5	6	7	8	9	10	11	12
$F_Z 10^{-3} mm$	3,3	4,2	4,8	5,3	5,7	6	6,4	6,7	7	7,2	7,5	7,7

Yukarıdaki çizelgelere ve formüle dikkat edilirse flanş malzemesinin göz ardı edildiği görülmektedir. Yani kullanılan malzemenin sert yada yumuşak olması sanki bizim f_z değerimizi değiştirmiyormuş gibi kabul edilmiştir. Kullanılan civata çapı da ihmal edilmiştir. Benzer şekilde STEINHILPER formülünde de civata çapı dahil edilirken yüzey pürüzlülüğü ihmal edilmiştir. Bu durumda kaba ve ince yüzeylerde sanki aynı miktarda pürüz ezilmesi görülüyormuş gibi bir sonuç çıkmaktadır. Civatanın küçük yada somunun büyük olması durumunda temas alanı hesaplanandan daha küçük olacağı için plastik deformasyonlar görülebilir (Şekil 2.27). Çelik civata bağlantıların dişli geçiş boyu civata nominal çapının en az 0,8 katı olmalıdır. Eğer bundan daha kısa olursa (sadece 1-2 diş yükü taşırsa) bu durumda diş temas alanı civata imalatçısının öngördüğünden daha küçük olacak ve montaj sonrası aşırı kayıplar görülebilecektir.

Yanlış malzeme kullanımı yada ısıl işlem sonucunda montaj elemanları olması gerekenden daha yumuşak olursa normal yüklerde ve doğru ebatlarda olmalarına rağmen öngerilme kaybı ve sürünme görülebilir.

Eğer civata sıkılırken bir yöne doğru eğilirse bir tarafı diğer tarafına göre daha fazla gerilmeye maruz kalacaktır. Bu durumda da normalde olması gerekenden daha fazla pürüz ezilmesi ve önerilme kaybı görülecektir.

Şekil 2.27 Uygun olmayan diş geçişi

Hiçbir zaman civata yada somun kafasının temas yüzeyleri diş eksenine yada delik eksenine dik değildir. Yani civata ilk sıkıldığında temas yüzeylerinin bir kısmı yüklenir. Bu anormal yüklenmiş yüzeyler yeni katılan emas yüzeyleri yüzey basıncını azaltana ve bağlantıyı sabit hale getirene kadar sürünecektir.

Eğer civata baş-gövde yuvarlatması delik kenarına temas ederse delik kenarı temas basıncı altında kırılacaktır. Bu durum öngerilmenin tamamının kaybına dahi sebep olabilir. Somun ve montaj yüzeyinin arasında yada civata başı, montaj yüzeyi arasında çok az temasın olması durumunda temas basıncını dağıtacak yada gerilmeyi sınırlayacak pul kullanılmazsa civata kendini montaj elemanına gömecektir.(Şekil 2.28)

2.7.1.2. Kısa zaman öngerilme kayıplarını etkileyen faktörler

Uzun ve ince civatalar , kısa ve kalın civatalara göre daha az oranda kayıp gösterirler. Toplam oturma öngerilme kuvveti kaybı aynı olmakla birlikte bu oturma civata boyunun farklı bir oranında gerçekleşeceği için toplam boy kaybı farklı olacaktır. Öngerilme kuvveti kaybı miktarı boydaki değişim ile orantılı olarak gerçekleşir

Montajı oluşturan bağlantı elemanı sayısının artması da oturmaya ve yerleşmeye sebep olacak sivri noktaların sayısını arttıracağı için kayıp etkisini arttıracaktır. Temas eden yüzey sayısını iki katına çıkarmak kayıp miktarınıda neredeyse iki katına çıkaracaktır.

Sürünme ve oturma hareketleri belli bir zaman alır. Eğer civata çok hızlı sıkılırsa montaj elemanları oturmaya firsat bulamazlar. Bu durumda elemanlar montaj işlemi tamamlandıktan bir süre sonra öngerilme kuvvetini kaybederler. Bunun önüne geçmek için bir civata bir anda tam sıkılmak yerine azar azar ve beklenerek sıkılmalıdır. Ya da bir gurup civata sıkılıyorsa dönüşümlü olarak sıkılmalıdır.

Aynı anda birden fazla civatanın sıkılması durumunda, tek tek sıkılan civatalarda görülen kuvvet kayıplarından daha az kayıp görülmüştür. Bunun sebebi büyük olasılıkla aynı anda sıkılan civataların yükü paylaşarak daha az pürüz ezilmesi ve sürünmeye maruz kalmasıdır.

2.7.1.2. Beklenen öngerilme kuvveti kaybı miktarı

Öngerilme kuvveti kayıplarını ortaya çıkaran etmenleri oldukça fazla ve tahmin etmek güçtür. Kuvvet kaybının miktarının hesaplanması için çeşitli formüller çıkarılmasına rağmen, en kesin sonucu her bir uygulama için deney yapmak verecektir. Söz konusu olan civata bağlantısı olduğu için sonucun bir değer değil de değerler dağılımı olması da çok şaşırtıcı olmayacaktır. Genellikle civatalar sıkıldıktan hemen sonra rahatlarlar ve bu rahatlama git gide azalarak uzun bir süre devam eder.(Şekil 2.29)

Şekil 2.29. Montaj kuvveti-Zaman grafiği

Bu konuda yapılan çalışmalardan örnek vermek gerekirse; Fisher ve Struik A325 ve A354 kalite civatalar ve A7 yapısal çelik flanşlar ile yaptıkları deneyler sonucunda sıkmanın hemen sonrasında %2-11, takip eden 21 günde %3.6, sonraki 11 yılda %2 öngerilme kaybı saptamışlardır.(FISHER 1987). Betlehem Steel yaptığı çalışmalarda sıkılmanın hemen sonrası %5, yapının geri kalan ömrü boyunca da yine %5 kayıp gözlemlemişlerdir. Chesson ve Munse çeşitli ebatlarda ve tipte civatalarla deneyler yapmışlardır. Örneğin A325 kalite civata, flanşlı somun ile pulsuz deneyler yapmışlar sıkılmayı takip eden ilk dakika içinde %2,6 öngerilme kaybı gerçekleşmiştir. (Pek çoğu ilk 15-20 sn içerisinde).5 gün sonra da %6,5 kayıp gözlemlenmiştir. Hardiman öngerilme kaybının büyük bir kısmının ilk birkaç sn içinde gerçekleştiğini belirtirken, asla durmadığını da eklemiştir.(BICKFORD 1995)

2.7.2 Somun faktörleri

Yapılan araştırmalar sonucunda labaratuvar ortamında örnek veya prototip bir bağlantıda hesaplanan somun faktörü ile sahada işletme ortamında karşılaşılan somun faktörleri arasında kayda değer farklılıklar görülmüştür. Bu durum takım doğruluğu, operatör ustalığı sıkma prosedürü gibi farklılıklarının , en az civataların yağlanma ve vida durumu kadar önemli olduğunu göstermektedir.

Brookheaven Ulusal Labaratuvarları ağır yüklenmiş ve civata yağıyla kaplanmış metal yüzeyler arasındaki sürtünme katsayısını ölçmüştür. Bunun için 3 farklı imalatçıdan molydisülfit yağlayıcı tedarik etmişlerdir. Deneyler kuru ve yağlı halde yapılmıştır. Deneylerin sonucunda sürtünme katsayıları 0,026 ile 0,273 arasında değişken değerlerde hesaplanmıştır. 10:1 sapma söz konusudur. NRC tarafından yapılan diğer bir testte grafit bazlı yağlayıcılarda 3:1, bakırgrafit, nikel grafit yağlayıcılarda ise 2:1 sapma görülmüştür. Her ne kadar deneylerde civata kullanılmamış olsa da benzer sonuçların civatalar için de alınacağı aşikardır.(BICKFORD 1995)

Dizel motor imalatçısının yaptığı bir deneyde ise aynı parçaları kullanarak (her seferinde tekrar yağlıyarak) belirlenen öngerilme değerine ulaşmak için gereken momentin %50 arttığını hesaplamışlardır. Bu durumda somun faktörü civataların tekrar kullanılmasıyla %50 artmıştır. Bir nükleer santralde kullanılan 3'' lik civataların tekrar tekrar kullanılmasıyla yapılan deneylerde de aynı öngerilmeyi elde etmek için uygulanan momentin arttırılması gerektiği saptanmıştır.(BICKFORD 1995)

Bir havacılık frması ise $\frac{7}{8}$ inç MP35N civataları kullanarak yaptığı deneylerde civatalar 46000 Lb. yüke sıkılmış, gevşetilmiş sonra tekrar sıkılmıştır. 20 kere bu işlem tekrarlanınca gereken moment miktarı Şekil 2.30'da görüldüğü gibi 500lb-ft momentten 200 lb-ft momentin altına kadar azalmıştır.

Şekil 2.30 Civataların tekrar kullanılmasıyla Tork-Öngerilme (BICKFORD 1995)

Yağlamanın diğer bir faydası da aynı ebatta ve aynı moment uygulanan bir grup civatada elde edilecek nihai öngerilme kuvvetinin birbirine yakın değerlerde olmasını sağlamaktadır. Yani düşük sürtünme katsayısı hata payını azaltmaktadır. Şekil 2.31'de 140 adet makine yağlı ve 140 adet kuru M12 çelik civatada akma sınırına kadar moment uygulandığı zaman, civatalarda oluşan öngerilme kuvveti dağılım histogramı görülüyor. Elde edilen nihai öngerilme kuvvetleri aynı ve makine yağı iyi bir yağlayıcı olmadığı için aralarında doğruluk açısından çok az bir fark var. (BICKFORD 1995)

Şekil 2.31 Yağlı ve Kuru durumda, hedeflenen öngerilme kuvvetinden şaşma olasılığı (BICKFORD 1995)

Raymond Mühendislik tarafından yapılan deneylerde ise daha dramatik sonuçlar alınmıştır. Bir buhar tirbününe ait 2^{1/4}-8x12 B16 civatalar molibden disülfit ile yağlanmıştır. Kuru halde iken yapılan deneylerde alınan sonuç kümeleri görülüyor. Yağlayıcının çok uygun bir diş yağlayıcısı olması sebebiyle Tork – Öngerilme grafiğinde belirgin farklılık ve saçılma görülmüştür. (Şekil 2.32) (BICKFORD 1995)

Şekil 2.32. Molibden disülfit ile yağlanmış ve kuru durumlarda Tork - Uzama Grafiği (BICKFORD 1995)

2.7.3. Civata sıkma yöntemleri ve sıkma faktörü

Önemsiz civata bağlantılarında sıkma işlemi anahtar vasıtasıyla el kuvveti ile yapılır. Bu işlemde doğruluk büyük oranda ustanın tecrübesine ve el alışkanlığına bağlıdır. Sonuçta civatalar fazla veya az sıkılır. Genelde endüstriyel kullanımda M12-M16 arasındaki 5.6 ve 6.8 kalitesindeki civatalar ile daha küçük boyutlu ama daha kaliteli M8-M12 aralığındaki 8.8 ve 10.9 civatalar el ile anahtar kullanılarak oldukça doğru bir şekilde sıkılabilmektedir.

Bu sebeple civatalar sıkılıken çeşitli yöntemler geliştirilmiştir. Burulma açısına dayalı ölçme yönteminde özel ekipmanlarla burulma açısı ölçülerek sıkma momenti ile burulma açısındaki linnerlik gözlenilir. Lineerliğin bittiği yerde sıkma işlemi bitirilir. Dönme açısına göre sıkma yönteminde ise dönme açısı ölçerler yardımıyla civatanın sıkma esnasında yaptığı tur açısı ölçülür. Moment artış oranına göre civatanın dönme miktarının azaldığı yerde sıkmanın tamamlandığı anlaşılır.

Büyük civataların kullanıldığı bağlantılarda insan gücü civatayı sıkmaya yetmemektedir. Bunun için ya çok uzun sıkma kolları gerekmektedir yada hidrolik, pnömatik tork arttırıcılar kullanılmaktadır.

Momente dayalı sıkma işleminde üzerinde analog yada dijital gösterge bulunan anahtarlar yardımıyla uygulanan moment anlık olarak gözlenebilmektedir. Uygulanan moment istenilen momente erişince sıkma işlemi bitirilir. Bir civatanın sıkılması için gereken toplam moment

$$M_{cs} = F_{\ddot{O}N}\left(\frac{d_2}{2} tg(\alpha + \rho') + \mu_k \frac{d_0}{2}\right)$$
(2.66)

şeklinde belirlenmiştir. Sıkma momentinin 3 parçaya ayrıldığının kabul edersek.Bunlar

 $M_2 = F_{\ddot{O}N} \cdot \frac{d_2}{2} \cdot tg\rho'$, dişler arasındaki sürtünmeyi yenen kısım

 $M_3 = F_{ON} \cdot \mu_k \cdot \frac{d_0}{2}$, parçalar arsındaki sürtünmeye harcanan kısım Ortalama bir sürtünme katsayısından hareket edersek ($\mu = \mu_k = 0,12$) standart civatalar için bu parçalardan vidanın öteleme hareketini sağlayan faydalı moment bölümü

$$M_{1} = F_{\ddot{O}N} \cdot \frac{d_{2}}{2} \cdot tg\alpha = F_{\ddot{O}N} \frac{P}{2.\pi}$$
(2.67)

Bu durumda toplam momentin %12'sinin faydalı momenti oluşturduğu, geriye kalan %42'sinin dişler arası sürtünmeyi yenmeye harcandığını, %46 lık son kısmının ise parçalar arasındaki sürtünmeye harcandığı görülür. Toplam momentin %88 gibi çok büyük bir kısmı sürtünmeye harcanmaktadır. Yani sürtünme katsayısı ve yüzey pürüzlülüğüyle doğrudan ilişkilidir. Ancak aynı imalat yöntemi kullanılarak aynı malzemeden üretilmiş civatalarda bile farklı sürtünme katsayıları ölçülmüştür. Bu

yüzden belli bir öngerilme kuvveti elde etmek için uygulanması gereken moment değeri civatadan civataya değişmektedir.

Gerçekte sürtünme katsayısı tek bir değer olarak değil en küçük ve en büyük iki değer arasındaki değerler aralığı olarak ölçülmektedir. Bu durumda eğer büyük sürtünme katsayısı değeri göz önüne alınarak sıkma momenti hesaplanırsa ve gerçek sürtünme katsayısı varsaydığımızdan düşükse, elde edeceğimiz öngerilme kuvveti çok büyük değerlere ulaşarak akma sınırını aşabilir. Bunun önüne geçmek için sürtünme katsayısı hesabında küçük değeri almak daha emniyetli olacaktır. Sıkma momenti uygulaması sırasında, yöntemine bağlı olarak bazı sapmalar gerçekleşmektedir. Yani tüm şartlar aynı olsa bile civataya uygulanan moment $M_{s min}$ ve $M_{s maks}$ arasında değişebilmektedir. Bunun sonucunda elde edilen öngerilme kuvveti $F_{ON min}$ ve $F_{ON maks}$ arasında değişir. Bu farklılık sıkma faktörü α_A ile ifade edilir (Çizelge 2.8).

$$\alpha_A = \frac{F_{M \ maks}}{F_{M \ min}} \tag{2.68}$$

α_A	Sıkma Yöntemi	Sapma
		Miktarı (%)
1	El ile kontrolsüz sıkma, akma sınırıyla	±5 ±12
	ayarlı motorla sıkma	
1	Dönme açısına göre ayarlı motor veya	±5 ±12
	elle sıkma	
1,21,6	Civatanın uzamasını ölçü esası alan	±9 ±23
	yöntemler, hidrolik sıkma	
1,41,6	Moment ayarlı anahtarla sıkma (gerekli	±17 ±23
	moment hesabını sürtünme katsayısı	
	tahmini alınır)	
1,72,5	Moment ayarlı özel takımlarla sıkma	$\pm 26 \pm 43$
2,54	İmpuls ayarlı darbeli çalışan özel	$\pm 43 \pm 60$
	anahtarla sıkma	

Çizelge 2.8. Sıkma yöntemine bağlı olarak α_A değerleri

İşletme şartlarında civataya gelen kuvvet $F_{ON \ maks}$ mı yoksa $F_{ON \ min}$ midir bilinmediğine göre ikisinin arasında bir değer olacaktır. Civatanın işlevini yerine getirebilmesi için gereken kuvvet F_{ON} belirlendi ise buna oturma olayında zaman içinde kaybolacak kuvvet ΔF_V eklenerek minimum montaj kuvveti $F_{ON min}$ elde edilir. $F_{ON min}$ uygulanan sıkma yöntemine ait sıkma faktörü α_A ile çarpılarak en büyük montaj kuvveti $F_{ON maks}$ bulunur. Civataya gelen en büyük zorlama montaj aşamasında gerçekleşir. Bu yüzden çekme gerilmesi değeri ve eşdeğer gerilme hesaplanırken $F_{ON maks}$ dikkate alınır.

$$\sigma_C = \frac{F_{\ddot{O}N\ maks}}{A_s} \tag{2.69}$$

$$\tau = \frac{F_{\ddot{0}N\,maks}\left(\frac{d}{2}tg(\alpha+\rho')\right)}{\pi \frac{d_{s}^{2}}{16}}$$
(2.70)

$$F_{ON \ maks} = \frac{0.9.\sigma_{ak}.A_s}{\sqrt{1+3.\left[\frac{tg(\alpha+\rho').d_2.A_s}{2.Wp}\right]^2}}$$
(2.71)

elde edilir.

2.8. Yüzey Pürüzlülüğü

İşleyici takımların parça üzerinde bıraktığı çizikler ve kısa dalga boylu uzunluklara yüzey pürüzü denilmektedir. Takımın ilerleme yönünde bu izlerin dalga boyu düşükken çapraz yönde dalga boyu daha büyüktür. Yüzey pürüzlülüğü terimi ise fiziksel yüzey üzerindeki küçük ölçekli yükselti değişikliklerinin ölçülmesi için kullanılır. Yüzey pürüzlülüğü sürtünme, aşınma, yorulma gibi sonuçlar doğurduğu için genelde istenmeyen bir özellik iken, söz konusu yüzey üzerinde yağlayıcıların tutulması olduğu zaman malzeme için avantaj sağlamaktadır.

Yüzey yapısını tanımlamakta kullanılan başlıca terimler aşağıdaki gibidir.

Pürüzlülük: Çeşitli yüzey işlemlerinin yüzeyde oluşturduğu düzensizliklerin birleşimidir. Bu düzensizlikler yüzey dokusunu meydana getirir.

Pürüz yüksekliği: Bir referans çizgisine göre yüzeydeki pürüzlerin yüksekliğidir. Birimi milimetre, mikron ya da mikro inç olarak ölçülebilir. Pürüz yüksekliği için ortalama yükseklik, yüzey yapısında başrolü oynar. Fakat yüzey pürüzlülüğünü kontrol etmeye yetmez.

Pürüz genişliği: Baskın yüzey paternine uyumlu yükseltiler yada çukurlar arasındaki nominal yüzey üzerindeki paralel mesafedir.

Pürüz genişliği kesiti: Ortalama yüzey yüksekliğinin ölçümünde yer alacak pürüzlerin ölçümlerinin alınacağı mesafedir.

Uzanım: Oluşturulan baskın yüzey patterninin uzanımını gösteren ifadedir ve aynı zamanda yüzey işleme operasyonunun bir aynasıdır.

Dalgalanma: Pürüzlülük tanımı dışında kalan ve parçanın genelinde görülen yüzey düzensizlikleridir. Genelde düzensiz dalga boyu uzunlukları halinde görülür. Bu tür oluşumların sebebi taşlama esnasında taş yüzeyindeki eksikliklerden, işleme takımının bağlantı tertibatındaki titreşimlerden ya da ısıl işlemlerden meydana gelebilir.

Şekil 2.33. Yüzey karakteristikleri

1930'lu yıllarda metal yüzeylerinin pürüzlülük değerlendirilmesi, o yüzeye bakarak veya dokunarak yapılırdı. Yüzeyde yüksek yansıma varsa yüzey pürüzsüz

olarak düşünülürdü. Ancak bu tip değerlendirmenin ömrü pek uzun olmadı. Metal yüzeyinin değerlendirmesi şahıstan bağımsız olarak düşünülmeye başlandı. Böylece düşünceler Şekil 2.33'deki parametreler üzerinde yoğunlaştı.

Şekil 2.34. Yüzey profili

Şekil 2.35. Profil eğrisindeki yumuşama

Şekil 2.34'de bazı yüzey profilleri görülüyor. Bir yüzey profili incelenirken yatay ve düşey eksenlerin birimlerine dikkat etmek gerekmektedir. Örneğin yatay eksenin birimi milimetre iken düşey eksen mikrometre olabilir. Bu durumda profil eğrisine yakınlaşınca sivri pik noktalarını yumuşadığı görülür. Şekil 2.35'de bu yumuşama görülüyor.

Yüzey pürüzlülüğü ölçümünde üç adet uzunluk söz konusudur. Bunlar Git-Gel uzunluğu, Ölçme Uzunluğu ve Örnekleme uzunluğudur. Git-Gel uzunluğu ölçme aletinin hareket ettiği ve veri değerlendirme sisteminin hareketleri kaydettiği uzunluktur. Bu Git- Gel mesafesinin profesyonel komiteler tarafından belirlenmiş bir ölçme uzunluğu değeri kadar olan kısmı değerlendirmeye alınır. Ve bu ölçme uzunluğu boyunca elde edilen veriler parametrelerin hesaplanmasında kullanılır. Şekil 2.36'da bu uzunluklar görülüyor. Bazı durumlarda bu parametreler daha küçük ve eş boyutlu (genelde 5 adet) örnekleme uzunluklarında hesaplanırlar. (SOUTHERN 2005)

Şekil 2.36. Profil ölçüm uzunlukları

Profilometre verisinden pek çok sayısal değerler hesaplanabilir. Bu değerlerden en çok kullanılanları R_a ve R_a değerleridir. Bu değerler Şekil 2.37'de görülmektedir.

$$R_{a} = \frac{1}{l} \int_{0}^{l} |y(x)| dx$$

$$R_{q} = \sqrt{\frac{1}{l} \int_{0}^{l} y^{2}(x) dx}$$
(2.72)
(2.73)

y(x) = pürüzlülük profilindeki profil değerleri.

Şekil 2.37. R_a ve R_q değerleri.

 R_a (Aritmetik Ortalama Sapması): Pürüzlülük profilinde anlamlı çizginin üstünde ve altında kalan alanların aritmetik olarak değeridir.

 R_q (Aritmetik Ortalama Sapmanın Karekökü): R_a değerinin karekökü anlamında kullanılan bir ifadedir.

Burada dikkat edilmesi gereken husus, birbirinden çok farklı özellikteki yüzeylerin dahi aynı R_a değerlerini üretebileceğidir. Bu yüzden değerler tek başlarına yüzeyler hakkında hüküm vermek için kullanılmamalıdır. Mümkünse diğer tekniklerle karşılaştırılmalıdır. Genelde profilometri verileri elde edilirken x yönündeki süreksiz adımlar kullanılır. Mahr Yüzey ölçüm sistemlerinde ölçme uzunluğu 8064 eşit noktaya bölünür. Bu yatay çözünürlüğü belirler. Örneğin eğer ölçme uzunluğu 10 mm ise yatay çözünürlük 1,24 x 10⁻³ olarak belirlenir. Dikey eksenin çözünürlüğü ise ölçme ucunun çarpılma mesafesine bağlıdır. Mutlak eksene göre +/- 250 mm çarpılabilen bir ucu ele alırsak, düşey eksen $2^{16} = 65536$ adıma bölünür. Bu durumda maksimum 7 nm çözünürlük sağlar . Şekil 2.38'de ölçüm uzunluğu boyunca ölçülen en yüksek R_p ve en alçak R_v mesafelerini gösteriyor. En alçak ve en yüksek nokta arasındaki mesafe ise R_t değerini verir.

Şekil 2.38. R_p ve R_v

Yüzey pürüzlülüğü ölçümünde en sık kullanılan bir diğer parametre R_z 'dir. Ortalama pürüz yüksekliği olarak tanımlanan bu parametre hesaplanırlen önce profile paralel bir eksen çizilir. Bu profilden en dip 5 noktaya olan uzaklıklar ölçülüp ortalaması alınır. (Şekil 2.39)

Şekil 2.39. Rz parametresinin hesaplanması

(2.74)

olarak bulunur.

3. MATERYAL ve METOD

3.1. Materyal

Deneylerde C1050 imalat çeliği, ss 304 paslanmaz çelik ve Al5075 Alüminyum malzemelerden yapılmış flanş parçaları kullanılmıştır.

3.1.1. Numunelerin hazırlanması

Sırasıyla M8, M10, M12 civatalarla birbirine bağlanacak flanş parçaları c1050 imalat çeliği, ss304 Paslanmaz Çelik ve Alüminyum Al5075 malzemeden 10 mm kalınlıklarla imal edilmiştir. Numunelere ait teknik resimler Şekil 3.1'de verilmiştir. Numunelerin imalatı Antalya Serbest Bölgesinde su jeti tezgahında kesilerek yapılmıştır. Sanayide en sık rastlanılan yüzey pürüzlülüklerini elde etmek için numuneler çeşitli işlemlerden geçirilmiştir (Şekil 3.2)

Bu deneyde civatanın içinden geçeceği delik için TS 528 EN 20273 standardı doğrultusunda ince toleransla geçiş sağlanmıştır. Numunelere hiçbir şekilde ısıl işlem uygulanmamıştır. Deneyler 25 C° oda sıcaklığında yapılmıştır.

Deneylerde M8, M10, M12 ebatta 8.8 kalitede NORM marka çelik civatalar ve bunlara uygun standart somunlar kullanılmıştır. Ultrasonik ölçüm işleminin hassasiyeti açısından civatanın baş kısmındaki marka yazıları ve uç kısmı tornada hassas bir şekilde işlenerek pürüzsüz hale getirilmiştir. Kullanılan civataların ebatları Çizelge 3.1'de verilmiştir.

Çizelge 3.1. Deneylerde kullanılan civataların ölçüleri

Kullanılan Civata	Adım(mm)	Boy (mm)
M 8	1,25	45
M 10	1,5	45
M 12	1,75	45

Şekil 3.1. Deneylerde kullanılan flanşların ölçüleri

Şekil 3.2 Deneylerde kullanılan flanşlar

3.1.2. Yüzey pürüzlülüğü ölçüm cihazı

Flanş parçalarının yüzey pürüzlülüğü ölçümü için Mahr marka Perthometer V2 cihazı kullanılmıştır (Şekil 3.3). Cihazın ölçebildiği maksimum pürüzlülük değeri 150 µm dir. Cihazın üzerinde bulunan LCD ekran sayesinde ölçüm paremetreleri ve ölçülen pürüzlülük değeri anında okunabilmektedir. Ayrıca cihaz üzerinde bulunan dahili yazıcıdan pürüzlülük profili çıktı olarak alınabilmektedir. Cihazın hatasız bir ölçüm yapabilmesi için pürüzlülüğü ölçülecek yüzeye paralel olarak konumlandırılmasına
yardımcı olacak vida ile sıkıştırılarak ayarlanabilen destek ayakları mevcuttur. Bunun yanından silindirik yüzeylerden de ölçüm yapılabilmesine olanak sağlayan sökülüp takılabilen burun aparatı da mevcuttur. Cihazın kalibrasyonunun yapılabilmesi için yüzey pürüzlülüğü 10 μ m (R_a, R_y değerleri) olan hassas kalibrasyon numunesi bulunmaktadır.

Şekil 3.3. Mahr yüzey pürüzlülük ölçüm cihazı

3.1.2.1. Pürüzlülük değerlerinin ölçülmesi

Cihaz çalıştırılır. Daha sonra arzu edilen parametre değerleri (Ölçüm boyu, ölçüm sayısı, birimler) belirlenir. Cihaz ayarlı ayakları yardımıyla düz bir zemin üzerinde ölçümü yapılacak numuneye paralel bir konuma getirilir. Ölçüm ucunun yüzeye noktasal teması sağlanır. Çalıştırma tuşuna basılır. Ölçüm ucu ayarlanan mesafe boyunca ilerleyerek daha önce belirlenen sayıda ölçüm alır. Daha sonra başlangıç konumuna döner. R_a ve R_z değerleri ekranda görülür. Yazılı çıktısı alınır.

3.1.2.2. Cihazda bulunan ölçüm parametreleri

Ölçüm mesafesi (L_t) DIN EN ISO 4288/ASME B461 standartına göre 1.75 mm, 5.6 mm, 17.5 mm (.07 in, .22 in, .7 in) veya EN ISO 12085 standartına göre 1 mm, 2 mm, 4 mm, 8 mm, 12 mm, 16 mm değerlerinden birisi seçilebilmektedir. Ölçüm sayısı ise 1 ile 5 arasında bir değer olabilir. Ancak 5'den büyük olamaz. Cihazın kaç μm ilerledikçe ölçüm alacağını veren sınır dalga boyu değeri (λ_c) 0.25 mm/0.80 mm/2.50 mm (.010 in/.032 in/.100 in) değerlerinden seçilebilmektedir (Çizelge 3.2).

$$L_t = \lambda_c \times n \tag{3.1}$$

Çizelge 3.2. Pürüzlülük ölçüm cihazı parametreleri (Mahr 04/99, TS 971/Aralık 1998)

Parametre	Tanımı	Standart
R _a	Pürüzlülük profil sapmalarının aritmetik ortalaması	DIN EN ISO 4287 : 1998, ISO 4287 : 1997, JIS B 0601 : 1994
R _q	Pürüzlülük profilinin RMS sapması	DIN EN ISO 4287 : 1998, ISO 4287 : 1997, JIS B 0601 : 1994
Rz	Ortalama tepe – çukur aralığı mesafesi	DIN EN ISO 4287 : 1998, ISO 4287 : 1997, JIS B 0601 : 1994
R _{max}	Maksimum pürüz derinliği	DIN 4768 : 1990
R _{p(y)}	Maksimum profil tepesi yüksekliği	DIN EN ISO 4287 : 1998, ISO 4287 : 1997
R _{pk}	İndirgenmiş tepe yüksekliği	DIN EN ISO : 13565-2 : 1997
R _k	Merkezdeki pürüz derinliği	DIN EN ISO : 13565-2 : 1997
R _{vk}	İndirgenmiş çukur derinliği	DIN EN ISO : 13565-2 : 1997
M _r 1	Malzeme oranı 1 (%).	DIN EN ISO : 13565-2 : 1997
M _r 2	Malzeme oranı 2 (%).	DIN EN ISO : 13565-2 : 1997
R _t	Pürüz derinliği	DIN EN ISO 4287 : 1998, ISO 4287 : 1997
Pc	1 cm'deki tepe sayısı	SEP 1940 : 1992, ANSI/ASME

	Çizelge 3.2'in Devamı	B46.1 : 1985
S _m	Ortalama profil bozukluğu aralığı	DIN EN ISO 4287 : 1998, ISO 4287 : 1997, JIS B 0601 : 1994
R	Ortalama pürüz motifi derinliği	ISO 12085 : 1996

3.1.3. Tork değerinin ölçülmesi

Civataya uygulanan anlık tork değerinin ölçülebilmesi için Tronic AT-1003-LDIN analog göstergeli torkmetre kullanılmıştır (Şekil 3.4). Torkmetrenin ölçüm aralığı 0-140 Nm olup çözünürlüğü 2,5 Nm dir. Torkmetre ölçüm toleransı \pm %4'tür. Cihaza sıkılacak civataya uygun lokma takıldıktan sonra el ile arzu edilen moment değeri analog göstergeden okunana kadar sıkılır. Daha sonra torkmetre civatadan ayrılır.

Şekil 3.4. Tronic AT-1003-LDIN analog göstergeli torkmetre

3.1.4. Civatanın ilk boyunun ve uzama değerlerinin ölçülmesi

Flanş bağlantısının yapılmasından önceki ilk boyun, sıkıldıktan sonra civatada meydana gelen uzama miktarının ve buna bağlı olarak oluşan öngerilme kuvvetinin ölçülebilmesi için DAKOTA ULTRASONİC firmasının ürettiği MİNİ-MAX ultrasonik ölçüm cihazı kullanılmıştır (Şekil 3.5). Ölçüm için önce cihaz açılır. DATA menüsünden yeni bir ölçüm gurubu oluşturularak kaç tane civatanın ölçüleceği ve her

bir civatanın kaç kere ölçüleceği girilir. Böylece ölçüm tablosu hazırlanır. MATL menüsünden civata malzemesi seçilir. GEOM menüsünden efektif boy, uzama değerini gerilmeye çevirecek olan yük faktörü değeri ve yük değerini gerilmeye çevirecek olan kesit alanı değeri girilir. MEAS tuşuna basılarak cihaz ölçüme hazır hale getirilir. Bu ekranda ALEN menüsü seçilerek ölçülecek civatanın yaklaşık boyu girilir. Civata başına az miktar ultrasonik sıvı damlatılır, daha sonra cihazın probu civatanın başına oturtulur. AUTOSET tuşuna basılarak ölçüm yapılır. İlk ölçüm civatanın sıkılmadan önceki referans ölçüsü olup LOC menüsüne girilerek tablodaki ilk sütüna bu değer yapıştırılır. Daha sonra prob civatadan ayrılır. Civata sıkıldıktan sonra tekrar prob civataya oturtulur. MEAS tuşuna basılır. LOC menüsüne girilerek ilk ölçülen değeri yazdığımız satırın sağ tarafındaki boş satıra ok tuşuna basarak geçilir. Cihaz otomatik olarak uzamayı ölçer ve ekranda gösterir.

Şekil 3.5. Mini-Max ultrasonik civata ölçüm cihazı

Aşağıda sayılan şartlar altında, ultrasonik ölçümün en doğru ve verimli çözüm olduğu kanıtlanmıştır.

-Sürtünme kuvvetindeki değişkenliklerin veya montaj geometrisinin, uygulanan moment ile civata tarafından üretilen gerçek montaj kuvvetinin doğru bir şekilde kontrolünü engellediği durumlar.

-Montaj kuvetinin bir civatanın hizmet süresince gözlenmesinin gerektiği durumlar.

Montaj kuvvetinin ultrasonik olarak ölçülmesi, civatada çekme gerilmesi arttıkça civata gövdesinden geçen ses dalgalarının hızında meydana gelen hız düşüşünün tespit edilmesiyle gerçekleşir. Civatanın bir ucundan gönderilen ses dalgasının diğer ucuna çarpıp geri dönmesi boyunca gereken sürenin ölçülmesiyle ultrasonik boy ölçülür. Civata sıkıldıkça bu ultrasonik boydaki değişiklik mevcut montaj kuvvetinin hesaplanmasında ve gösterilmesinde kullanılır.

Bu işlemin temelini oluşturan kurallar uzun yıllardır bilinmekte ve aktif sonar ve radar sistemlerinde kullanılmaktadır. Konsept kolay ve çok doğru sonuçlar veriyormuş gibi görünmekle beraber, optimum civata-algılayıcı çifti seçilmesi zor olabilmektedir.

Mini-Max sıkılan bir civatanın oluşturduğu montaj kuvvetini, zamana ve uzamaya bağlı olarak ölçebilmektedir. Bunun yanısıra herhangi bir malzemeden yapılmış 2,5 cm den 2,4 m boya kadar olan civatalarda gerilmeyi veya uzamayı ölçebilmektedir.

3.1.4.1. Ultrasonik dalgalar

Ultrasonik ölçüm uygun bir miktar ultrasonik enerjinin civata boyunca aktarılmasını gerektirir. Enerji aktarımında enerji darbe frekansı ile hedefi arasındaki ilişki oldukça önemlidir. Düşük frekanslar daha uzun dalga boyları yaratırken malzemede daha uzağa gidebilirler. Yüksek frekanslar ise daha kısa dalga boyları yaratırlar. Örnek vermek gerekirse AM radyo sinyalleri düşük frekanslı olup ufkun yüzlerce kilometre ötesine ulaşabilirken yüksek frekanslı FM sinyalleri kısa bir görüş mesafesinden algılabilir. Aynı durum ultrases için de geçerlidir. Düşük frekanslı 1 Mhz

53

darbe 5 Mhz'lik darbeden metal boyunca daha uzağa gidecektir. Böylece düşük frekanslı bir algılayıcı uzun bir civatadan yada ses dalgası iletimine direçli bir malzemeden yapılmış civatadan gelen yankıyı daha iyi algılayabilir. Düşük frekansın daha fazla nüfuz etme yeteneğine karşılık yüksek miktarda gürültü de oluşturur. Düşük frekanslı enerji tıpkı odaksız ışık gibi saçılma eğilimi göstermektedir. Civatanın diğer ucuna ulaşan dalgaların bir kısmı civatanın silindirik gövdesi boyunca kenardan kenara sekerek bozulmuş bir yankı yaratır . Yüksek frekanslı enerjide ise daha az bozulma ve yankı yaparak direk olarak bir uçtan diğerine giderek geri döner. (Operation Manual MINI-MAX 2008)

Maksimum frekans ile gürültü bastırımı dengesi uygun algılayıcının seçilmesini gerektiri. Algılayıcını çapı (genellikle mevcut piezoelektrik kristalinin çapıyla belirlenir) direkt olarak enerji iletimini etkiler. Büyük çaplı kristaller daha iyi enerji gönderip alma yeteneğine sahiptir ve daha az enerji saçılıma uğrar.

Ses dalgaları katı maddelerin ve pek çok sıvının içinden geçebilir. Ama havada seyahat edemez. Bu yüzden hava geçişinin oluşturacağı dirence sonik empedans denir. Bu durum ses dalgaları civatanın diğer ucundaki civata sonu-hava sınırına ulaştığında meydana gelir ve enerjinin büyük çogunluğu yankı olarak geri döner (Şekil 3.6). Algılayıcı ile civata sonu arasındaki herhangi bir hava boşluğu sonik enerjinin geçişini engelleyecektir. Bu yüzden bu boşluk uygun bir sıvı ile doldurulmalıdır. Bu sıvının sonik empedansı civata malzemesine yakın oldukça , giden ve dönen ses dalgaları için kesintisiz bir geçit oluşturacaktır. Bu durum için gliserin bazlı maddeler iyi sonuç vermektedir. Sıvının akışkanlığı bulunduğu yerde kalmasına yetecek kadar az ama içnde hava kabarcıkları hapsettirmeyecek kadar çok olmalıdır.

Şekil 3.6. Ses dalgası ve yankı

3.1.4.2 Algılayıcı-civata yüzeyi temas şartları

Hedef olabildiğince çok sonik enerjiyi transducerden civataya aktarmak ve bu enerjiyi olabildiğince ileriye ve geriye iletmektir.Algılayıcıyı işlenmiş ve parlak bir yüzeye boşluksuz bir şekilde oturtmak doğru bir sinyal iletimi için gereklidir. Civata uçları temiz ve düzgün olmalıdır. Kaba ve pürüzlü yüzeyler trans ile uygun teması sağlayamayacağı ve enerjinin bir kısmını yan duvarlara doğru saptırarak ölçüm yanlışlığına sebep olacağı için dikkat edilmelidir (Şekil 3.7). Civata eksenine dik olmayan civata uçları enerjini kenarlara yönlenmesine sebep olarak zayıf sinyal kalitesi ve ölçüm hatalarına sebep olabilir. 2°'den büyük hiza hatalarına dikkat edilmelidir (Şekil 3.8). Paslı, kirli veya boyalı civata uçları trans ile civata arasındaki enerji iletimini engelleyebilir. (Operation Manual MINI-MAX 2008)

Şekil 3.7. Pürüzlü yüzey ve sapmış dalga

Şekil 3.8. Eğik Temas

Civata başlarındaki kazıntı şekilde yazılmış marka, model, kalite yazıları da sıvı ile doldurulabilir ancak az miktarda da olsa sinyal gücünde düşüşe sebep olabilmektedir (Şekil 3.9). Civata başlarındaki kabartma şekilde yazılmış marka, model, kalite yazıları transın düz bir şekilde oturmasını engelleyerek açılı oturmasına sebep olmakta ve sinyal yönünde sapmaya sebep olabilmektedir (Şekil 3.10).

Şekil 3.9. Civata başındaki kazıntı

Şekil 3.10. Civata başındaki kabartı

3.1.4.3. Yankı yüzeyi

Düzgün, civata eksenine dik, pürüzsüz bir yankı yüzeyi doğru bir yankı oluşturacaktır. Civatanın her iki ucu da temizlenmiş ve sıfırlanmış olmalıdır. 2 dereceden fazla hiza bozuklukları kayda değer hata oluşturmaktadır. Yankı yüzeyinin kaba yada eğik olması enerjinin saçılmasına ve zayıf yada bozulmuş bir yankı oluşumuna sebep olacaktır (Şekil 3.11). Yankı yüzeyinin eğik olması enerjinin saparak yan duvarlardan yansımasına sebep olabilir (Şekil 3.12). Civatanın eğilmesi de dik olmayan yansımalara sebep olacaktır (Şekil 3.13).

Şekil 3.11. Yankı yüzeyindeki pürüzlülük sorunu

Şekil 3.12. Eğik yankı yüzeyi sorunu

Şekil 3.13. Eğik civata sorunu

3.1.4.4. Algılayıcı Seçimi

En iyi sonuçların alınması için doğru tran seçimi çok önemlidir. Civataya tamamen oturacak çapta büyük trans seçilmelidir. Uygun frekans belirlenirken aşağıdaki sartlar gözden geçirilmelidir.

Düşük çaplı civatalar ölçülürken yüksek frekanslar daha iyi bir seçimdir. Ses daha iyi odaklanır ve daha az saçılır. Eğilme veya potansiyeli olan malzemelerde düşük fekanslar seçilir. Bunun sebebi düşük frekansın dalga formunda bozulmaya dirençli olmasıdır. Düşük frekanslar bozulma oluşmadan önce daha çok faz yükselmesini gerektirir. Düşük frekans daha az odaklanma ve daha çok çarpılma vaad eder. Bu sayede eğilmiş civatalarda kullanılmaya en uygun seçim olarak görülmektedir. Deneylerde imalatçı firmaya danışılarak onların tavsiyeleri doğrultusunda çelik civatalarla uyumlu olan ¹/4[°], 5 Mhz ölçüm probu kullanılmıştır.

3.1.4.5. Cihazın sıfırlanması

Yankının mini-max cihazı ve algılayıcı ikilisi tarafında doğru ölçülebilmesi için sistemin sıfırlanması gerekmektedir. Bunun sebebi yankının civatadan algılayıcı yüzeyine aktarılması ve oradan da cihaz tarafından algılanmasına kadar elektronik gecikmenin meydana gelmesidir. Buna gecikme faktörü yada sıfır zamanı ötelemesi denir. Elektronik parçalardaki , algılayıcıdaki ve kablosundaki farklılıklar buna sebep olur. Bu sebeple aynı cihaz ile farklı algılayıcılar kullanılıyorsa her söküp takma işleminden sonra sıfırlanma yapılmalıdır.

Mini-Max'ta sıfırlama işlemi ultrasonik hızı ve boyu bilinen kalibrasyon çubukları ile yapılmaktadır. Cihazla birlikte 3'' uzunluğunda paslanmaz çelik kalibrasyon bloğu alınmıştır. Bloğun bilinen fiziksel boyu ve ölçülen ultrasonik boyu sayesinde gecikme faktörü hesaplanmaktadır. Bu değer hesaplandıktan sonra cihaz ,ölçümle elde edilen zaman değerinden bu gecikme süresini çıkararak gerçek zamanı hesaplar. Daha sonrada bu zamandan yola çıkarak boyu doğru bir şekilde ölçer. Eğer sürekli tek bir cihaz ve algılayıcı ikilisi kullanılıyorsa ve hiç birbirinden ayrılmıyorsa sıfırlamayı bir kere yapmak yeterlidir.

3.1.4.6. Cihaz Parametreleri

Ultrasonik ölçüm cihazı civatadaki uzama miktarını aşağıdaki formül ile hesaplamaktadır.

$$X_E = S_F x \, V_0 x \Delta T \tag{3.2}$$

 X_E = Uzama miktarı (mm)

 S_F = Sonik gerilme faktörü

V₀= Ses dalgasının malzemede ilerleme hızı (mm/sn)

 $\Delta T = Zamandaki değişim (sn)$

Ultrasonik ölçüm cihazı civatadaki öngerilme kuvveti değerini Hook kanunundan hareketle aşağıdaki formül ile hesaplamaktadır.

$$F_{\ddot{O}} = \frac{\Delta L x A_S x E}{L_E}$$
(3.3)

$$\begin{split} F_{On} &= \text{Ongerilme kuvveti (N)} \\ \Delta L &= \text{Uzama miktarı (mm)} \\ A_S &= \text{Civata kesit alanı (mm^2)} \\ E &= \text{Civata malzemesinin elastisite modülü (N/mm^2)} \\ E_{\text{Celik}} &: 2,1.10^5 \text{ N/mm}^2 \text{ olarak alınmıştır.} \\ L_E &= \text{Gerilme altındaki efektif boy (mm) (Şekil 2.11)} \end{split}$$

Çizelge 3.3 10 mm kalınlıklı ikili flanş montajı için civata L_E değerleri

Civata Ebadı	Civata / Somun baş yüksekliği (mm)	L_{E} (mm)
M8	6,5	26,5
M10	8	28
M12	10	30

3.2. Metod

Bu çalışmada M8, M10, M12 ebatlarındaki 8.8 kalitede çelik civatalarda 2 flanşlı bağlantı durumunda uygulanan momente bağlı olarak elde edilen öngerilme kuvveti değerleri ölçülmüştür. .Sıkıştırma sırasında yüzey pürüzlülüğünden kaynaklanan sürtünmeyle kaybolan öngerilme kuvvet miktarı saptanmaya çalışılmıştır. Bunun yanısıra pürüzlerin ezilmesiyle oluşan plastik deformasyon sonucu kaybedilen öngerilme kuvveti miktarı saptanmaya çalışılmıştır . Deneyler kuru ve kırmızı gres yağı ile yağlanmış yüzey koşullarında tekrar edileceği için yağlamanın öngerilme kuvvetine etkisi konusunda da veriler elde edilmeye çalışılmıştır. Daha sonra elde edilen verilerin teorideki verilerle uyuşup uyuşmadığı incelenecektir. Deneylerde yağlayıcı olarak kullanılan kırmızı gresin viskozitesi 40 C°'de 140-180 CST aralığındadır.

Su Jeti tezgahında işlenilen flanş parçaları yüzeyleri çeşitli işlemlerden geçirilerek sanayide en çok kullanılan bazı yüzey koşulları elde edilmeye çalışılmıştır. Numunelere yapılan yüzey işlemleri Çizelge 3.4'de verilmiştir.Daha sonra montaj öncesindeki yüzey pürüzlülüğü (Rz) değerleri, "Perthometer M2 V3.03-00" yüzey pürüzlülüğü ölçüm cihazında ölçülmüştür (Şekil 3.14).

Çizelge 3.4 Deneylerde kullanılan flanşlara uygulanan yüzey işlemleri

C1050 İmalat Çeliği	Satıh Taşlama	Hassas Frezeleneme
SS 304 Paslanmaz Çelik	Hassas Tornalama	Hassas Frezeleneme
A1 5075	Su zımparası ile polisaj	Hassas Frezeleneme

Şekil 3.14. Flanşların yüzey pürüzlülüğünün ölçülmesi

Daha sonra flanş parçaları civata yardımıyla birleştirilmiş ve somun tarafından parçalar oynamıyacak kadar az bir miktarda el ile sıkılmıştır. Bu durumda ne civatada ne de flaş parçalarında herhangi bir deformasyon ve öngerilme mevcut olmayıp montaja hazır hale getirilmiştir. Bu konumda iken "MİNİ-MAX" ultrasonik ölçüm cihazı ile civatanın ilk boyu ölçülmüştür (Şekil 3.15).

Şekil 3.15. Civata boyunun ölçülmesi

Ölçülen yüzey pürüzlülüğü değerine bağlı olarak ve 3 farklı değerde montaj torku belirlenerek "TRONİC AT-1003 analog göstergeli torkmetre yardımıyla parçalar sıkılmıştır(Şekil 3.16).

Şekil 3.16. Civatanın sıkılması

Sıkılma işleminin tamamlanmasının ardından tekrar MİNİ-MAX" ultrasonik ölçüm cihazı ile civatanın son boyu ölçülmüştür. Civatada meydana gelen uzama miktarı cihaz üzerinden okunmuştur. Daha sonra Hook kanunundan hareketle (76) uzama miktarından (Δ L), Öngerilme kuvveti (F_{ÖN}) hesaplanmıştır.

Hali hazırda civata bağlantıları hesaplanırken kullanılmakta olan montaj öngerilme kuvveti ve sıkma momenti değerleri Çizelge 3.5'de görülmektedir. Burada dişler arasındaki sürtünme μ = 0,12 alınmıştır.

Çizelge 3.5. Çeşitli civata ebatlarına karşılık tavsiye edilen öngerilme ve moment değerleri

Boyut	Kalite	μ=	0,08	0,10	0,12	0,14	0,16	0,20	0,24
		Montaj Öngerilme	18500	17900	17200	16500	15800	14500	13300
М 8	8 8	Kuvveti F _{ÖN} (N)							
IVI O	0.0	Sıkma Momenti	18	20,5	23	25	27	31	33
		M _{CST} (Nm)							
		Montaj Öngerilme	29500	28500	27500	26000	25000	23100	21200
M 10	<u> </u>	Kuvveti F _{ÖN} (N)							
IVI IU	0.0	Sıkma Momenti	36	41	46	51	55	62	67
		M _{CST} (Nm)							
		Montaj Öngerilme	43000	41500	40000	38500	36500	33500	31000
M 12	00	Kuvveti F _{ÖN} (N)							
	0.0	Sıkma Momenti	61	71	79	87	94	106	115
		M _{CST} (Nm)							

Çizelge 3.6 Deneyler kapsamında civatalara uygulanan moment değerleri

Flanş Malzemesi	Yüzey durumu	Civata	Uygulanan
		Ebadı	moment değerleri
			(Nm)
	Taşlanmış	M8	20,25,30
	Taşlanmış	M10	40,50,60
C1050 İmalat Çeliği	Taşlanmış	M12	80,90,100
(Kuru)	Hassas Freelenmiş	M8	5, 10 , 15
	Hassas Freelenmiş	M10	25,30,35
	Hassas Freelenmiş	M12	30,40,50
C1050 İmalat Çeliği	Hassas Freelenmiş	M8	5, 10 , 15
(Gres ile yağlanmış)	Hassas Freelenmiş	M10	25,30,35

Çizelge 3.6 Devamı	Hassas Freelenmiş	M12	30,40,50
	Hassas Tornalanmış	M8	20,25,30
	Hassas Tornalanmış	M10	40,50,60
SS 304 Paslanmaz	Hassas Tornalanmış	M12	80,90,100
Çelik (Kuru)	Hassas Freelenmiş	M8	5, 10 , 15
	Hassas Freelenmiş	M10	25,30,35
	Hassas Freelenmiş	M12	30,40,50
SS 304 Paslanmaz	Hassas Freelenmiş	M8	5, 10 , 15
Çelik (Gres ile	Hassas Freelenmiş	M10	25,30,35
yağlanmış)	Hassas Freelenmiş	M12	30,40,50
	Zımpara ile polisajlı	M8	20,25,30
	Zımpara ile polisajlı	M10	40,50,60
A15075	Zımpara ile polisajlı	M12	80,90,100
Alüminyum (Kuru)	Hassas Freelenmiş	M8	5, 10 , 15
	Hassas Freelenmiş	M10	25,30,35
	Hassas Freelenmiş	M12	30,40,50
Al5075 (Gres ile	Hassas Freelenmiş	M8	5, 10 , 15
yağlanmış)	Hassas Freelenmiş	M10	25,30,35
	Hassas Freelenmiş	M12	30,40,50

3.2.1. Uygulanan momentin oluşturacağı öngerilme kuvveti değerinin hesaplanması

Civatalara uygulanacak moment değerleri belirlendikten sonra teorik olarak bu momentlerin uygulanması sonucu elde edilecek öngerilme kuvveti ve öngerilme kuvveti kaybı değeri hesaplanmıştır. Bunun için aşağıdaki formül kullanılmıştır.

$$M_{CST} = F_{\ddot{O}N} \left[\frac{d_2}{2} tan(\alpha + \rho') + \mu_s \cdot \frac{d_s}{2} \right]$$

$$F_{\ddot{O}N} = M_{CS} / \left[\frac{d_2}{2} \tan(\alpha + \rho') + \mu_s \cdot \frac{d_s}{2} \right]$$

A_s: Gerilme kesit alanı değeri Çizelge 3.7'de verilmiştir. $\propto = \operatorname{arctg}\left(\frac{P}{\pi.d_2}\right) \text{ formülüyle hasaplanmış ve değerler Çizelge 3.7'de verilmiştir.}$ $\rho' = \arctan\left(\mu'\right) \text{ olarak hesaplanmıştır. Gerekli } \mu' \text{ değeri ise}$ $\mu' = \mu \cdot \sqrt{1 + \left(tg^2\left(\frac{\beta}{2}\right)\right) \cdot \cos^2 \propto} \text{ formülü ile hesaplanmıştır.}$ β: Metrik civatalar için 60° dir.

d₂ : Ortalama çap değeri Çizelge 3.7'de verilmiştir.

d₃: Diş dibi çapı değeri Çizelge 3.7'de verilmiştir.

d_s : Ortalama somun dayanma yüzeyi çapı olup Çizelge 3.7'de verilmiştir.

Çizelge 3.7 Çeşitli civata ebatlarına karşılık gelen çap ve alan büyüklükleri

Nominal	Adım	Dişdibi	Ortalama	Ortalama	Helis	Gerilme Kesit
Çap (d)	(P) mm	Çapı	Çap (d ₂)	Somun	Açısı	Alanı
mm		$(d_3) mm$	mm	Çapı (d _S)	(α)	$A_s(mm^2)$
8	1,25	6,466	7,188	10,76	3,17	36,6
10	1,5	8,160	9,026	13,76	3	58,0
12	1,75	9,853	10,863	16	2,93	84,3

 μ_s : Civata başı oturma yüzeyi sürtünme katsayısı olup Çizelge 2.4'den okunarak seçilmiş ve Çizelge 3.7'de verilmiştir.

μ: Vida dişleri arasındaki sürtünme katsayısı olup Çizelge 2.4'den okunarak seçilmiş ve Çizelge 3.8'de verilmiştir.

Çizelge 3.8 Flanş yüzeyleri ve vida dişleri için seçilen sürtünme katsayıları

Flanş Malzemesi	Somun Malzemesi	μ_{s}	μ
Taşlanmış İmalat Çeliği	Siyahlaştırılmış Çelik	0,16	0,15
(kuru)			
Frezelenmiş İmalat Çeliği	Siyahlaştırılmış Çelik	0,18	0,15
(kuru)			
Frezelenmiş İmalat Çeliği	Siyahlaştırılmış Çelik	0,1	0,1
(yağlı)			
Tornalanmış Paslanmaz	Siyahlaştırılmış Çelik	0,18	0,15
Çelik (kuru)			
Frezelenmiş Paslanmaz	Siyahlaştırılmış Çelik	0,18	0,15
Çelik (kuru)			
Frezelenmiş Paslanmaz	Siyahlaştırılmış Çelik	0,1	0,1
Çelik (yağlı)			
Polisajlanmış Alüminyum	Siyahlaştırılmış Çelik	0,1	0,15
(kuru)			
Frezelenmiş Alüminyum	Siyahlaştırılmış Çelik	0,15	0,15
(kuru)			
Frezelenmiş Alüminyum	Siyahlaştırılmış Çelik	0,08	0,1
(yağlı)			

3.2.2. Teorik olarak sürtünmesiz halde civatada oluşacak öngerilme kuvveti hesabı

Teorik öngerilme kuvveti ile , deneylerde elde ettiğimiz öngerilme kuvvetini karşılaştırarak uygulanan momentin ne kadarlık bir kısmının sürtünmeye harcandığını hesaplayabilmek için gerekli olan bu değer aşağıdaki formül ile hesaplanmıştır.

 $F_{ssz} = \frac{M}{tg(\alpha)x(d_2/2)}$

3.2.3. Yüzey pürüzlerinin ezilmesine bağlı plastik deformasyonun miktarının hesaplanması

Civata başının oturduğu yüzeyin pürüzlülüğü, somunun oturduğu yüzeyin pürüzlülüğü, flanşların birbirine temas eden yüzeylerinin pürüzlülüğü montaj öncesinde ve montaj sonrasında ayrı ayrı ölçülmüştür.Burada;

R_{ZC} : Civata oturma yüzeyi pürüzlülüğü (μm)

R_{ZS} : Somun oturma yüzeyi pürüzlülüğü (µm)

R_{Zfü} : Üst flanş alt yüzey pürüzlülüğü (µm)

R_{Zfa} : Alt flanş üst yüzey pürüzlülüğü (µm)

 ΔR_{ZS} : Somun oturma yüzeyinde ölçülen pürüzlülüğü kaybı (µm)

 ΔR_{Zfu} : Üst flanş alt yüzeyde ölçülen yüzey pürüzlülüğü kaybı (µm)

 ΔR_{Zfa} : Alt flanş üst yüzeyde ölçülen yüzey pürüzlülüğü kaybı (µm)

ΔRz : Montaj sonrası ölçülen yüzey pürüzlülüğü kaybı (μm)

%Rz : İlk yüzey pürüzlülüğüne göre gerçekleşen yüzde bazında kayıp (µm)

Rz: Tüm temas yüzeylerinde meydana gelen toplam pürüz kaybı (µm)

olarak sembolize edilmiştir.(Şekil 3.17). Bütün numuneler için ayrı ayrı,

Rz = Montajöncesi ($R_{ZC} + R_{ZS} + R_{Zfu} + R_{Zfa}$)- Montaj sonrası ($R_{ZC} + R_{ZS} + R_{Zfu} + R_{Zfa}$) değerleri hesaplanmıştır.

Daha sonra bu ezilme miktarlarının sebep olacağı öngerilme kuvveti miktarı 2.42 formülünden hareketle aşağıdaki formülle hesaplanmıştır. Elde edilen yüzey pürüzlülüğü kaybını literatürdeki verilerle karşılaştırmak için Bkz. Çizelge 2.7 (RENDE 2000), 2.65 numaralı formül (STEINHILPER 1986) ve Bkz. Çizelge 2.8 (KARL) kullanılarak pürüz ezilmesi mikteri hesaplanmış ve çizelgelerde verilmiştir.

$$\Delta F_Z = R_Z \times C_C$$

Şekil 3.17 Deneylerde kullanılan bazı semboller ve büyüklükler

4. BULGULAR

İki flanşlı öngerilmeli civata bağlantısı için yapılan öngerilme kuvveti kaybı aşağıdaki şekilde teorik değerler hesaplanıp, gerçek değerler ise Ultrasonik ölçüm sonuçlarından uzama miktarı okunarak hesaplanıp özetle tablo ve grafiklerle verilmiştir.

4.1 C1050 İmalat Çeliği Flanşlarla Yapılan Öngerilme Kuvveti Kaybı Deneyleri

4.1.1 M8x1,25 Civata deneyleri

4.1.1.1 Taşlanmış yüzey şartlarında yapılan deneyler

Taşlanmış yüzey şartları ve kuru civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,16$ ve $\mu = 0,15$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.1'de verilmiştir.

Çizelge 4.1 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	$\Delta F_{\ddot{O}N}$ (%)
20	11859	100787	88928	88
25	14823	125983	111160	88
30	17788	151180	133392	88

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.2'de verilmiştir.

Çizelge 4.2 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL} değerleri.

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{OL}(N)$
	0,1518	44028
	0,1635	47421
20	0,1509	43767

	0,1139	33035
Çizelge 4.2'in Devamı	0,0907	26306
Ortalama	0,13416	38911
	0,1766	51221
	0,1554	45072
25	0,1649	47827
	0,1602	46464
	0,1629	47247
Ortalama	0,164	47566
	0,2201	63837
	0,2218	64330
30	0,2452	71117
	0,2181	63257
	0,2172	62996
Ortalama	0,22448	65108

Çizelge 4.3 Uygulanan momente karşılık ölçülen F_{OL} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	$\Delta F_{\ddot{O}N}$ (%)
20	38911	100787	61875	61
25	47566	125983	78417	62
30	65108	151180	86072	57

Şekil 4.1 M8 civata ve taşlanmış imalat çeliği yüzey için Tork - F_{on} grafiği

4.1.1.2 Frezelenmiş (Kuru) yüzey şartlarında yapılan deneyler

Frezelenmiş yüzey şartları ve kuru civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,18$ ve $\mu = 0,15$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.4'de verilmiştir.

Çizelge 4.4 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
5	2787	25197	22410	89
10	5574	50393	44819	89
15	8361	75590	67229	89

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.5'de verilmiştir.

Cizelge 4.5	Uvgulanan m	omente ka	ırsılık ölci	ülen uzama ((ΔL) ve	Föld	değerleri.
, 0	50		, ,				0

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{OL}(N)$
	0,0249	7222
	0,0293	8498
5	0,0241	6990
	0,023	6671
	0,0248	7193
Ortalama	0,02522	7315
	0,0431	12501
10	0,0439	12733
	0,0441	12791
	0,0438	12704
	0,0412	11950
Ortalama	0,04322	12535
	0,0507	14705
	0,0588	17054
15	0,0534	15488
	0,0582	16880
	0,0607	17605
Ortalama	0,0563	16347

Çizelge 4.6 Uygulanan momente karşılık ölçülen F_{OL} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{\ddot{O}N}(N)$	$\Delta F_{\ddot{O}N}$ (%)
5	7315	25197	17882	71
10	12535	50393	37858	75
15	16347	75590	59243	78

Şekil 4.2 M8 civata ve frezelenmiş imalat çeliği yüzey için Tork - Fon grafiği

4.1.1.3 Frezelenmiş (Yağlı) yüzey şartlarında yapılan deneyler

Frezelenmiş yağlı yüzey şartları ve yağlı civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,1$ ve $\mu = 0,1$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.7'de verilmiştir.

Çizelge 4.7 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	F _{SSZ} (N)	$\Delta F_{\ddot{O}N}(N)$	ΔF_{ON} (%)
5	4335	25197	20861	83
10	8670	50393	41723	83
15	13006	75590	62584	83

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.8'de verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	F _{ÖL} (N)
	0,0366	10615
	0,0349	10122
5	0,0364	10557
	0,0402	11660
	0,0414	12008
Ortalama	0,0379	10992
	0,0724	20999
10	0,07	20303
	0,0675	19578
	0,0741	21492
	0,0734	21289
Ortalama	0,0714	20732
	0,1082	31382
	0,1023	29671
15	0,104	30164
	0,1069	31005
	0,1085	31469
Ortalama	0,1059	30738

Çizelge 4.8 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL} değerleri.

Çizelge 4.9 Uygulanan momente karşılık ölçülen F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	$\Delta F_{\ddot{O}N}$ (%)
5	10992	25197	14204	56
10	20732	50393	29661	59
15	30738	75590	44852	59

Şekil 4.3 M8 civata ve frezelenmiş imalat çeliği yağlı yüzey için Tork - Fon grafiği

4.1.2 M10x1,5 Civata deneyleri

4.1.2.1 Taşlanmış yüzey şartlarında yapılan deneyler

Taşlanmış yüzey şartları ve kuru civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,16$ ve $\mu = 0,15$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.10'da verilmiştir.

Çizelge 4.10 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{\ddot{O}N}(N)$	$\Delta F_{\ddot{O}N}$ (%)
40	18833	169640	150807	89
50	23542	212051	188509	89
60	28250	254461	226211	89

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.11'de verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{OL}(N)$
	0,1314	57159
	0,1384	60204
40	0,1489	64772
	0,1548	67338
	0,1413	61466
Ortalama	0,1429	62188
	0,1814	78909
	0,1962	85347
50	0,2062	89697
	0,1832	79692
	0,1707	74255
Ortalama	0,18754	81580
	0,2471	107489
	0,2616	113796
60	0,2705	117668
	0,2682	116667
	0,2618	113883
Ortalama	0,26184	113900

Çizelge 4.11 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL} değerleri.

Çizelge 4.12 Uygulanan momente karşılık ölçülen F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	$\Delta F_{ m ON}$ (%)
40	62188	169640	107.453	63
50	81580	212051	130.471	62
60	113900	254461	140.560	55

Şekil 4.4 M10 civata ve taşlanmış imalat çeliği yüzey için Tork - Fon grafiği

4.1.2.2 Frezelenmiş (Kuru) yüzey şartlarında yapılan deneyler

Frezelenmiş yüzey şartları ve kuru civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,18$ ve $\mu = 0,15$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.13'de verilmiştir.

Çizelge 4.13 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
25	11.055	106025	94970	90
30	13.266	127230	113964	90
35	15.477	148435	132958	90

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.14'de verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{OL}(N)$
	0,0457	19880
	0,0496	21576
25	0,0462	20097
	0,0489	21272
	0,0428	18618
Ortalama	0,04664	20288
	0,0703	30581
	0,0693	30146
30	0,0657	28580
	0,0666	28971
	0,0673	29276
Ortalama	0,06784	29510
	0,0926	40281
	0,089	38715
35	0,0895	38933
	0,0882	38367
	0,0886	38541
Ortalama	0,08958	38967

Çizelge 4.14 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL} değerleri.

Çizelge 4.15 Uygulanan momente karşılık ölçülen F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
25	20288	106025	85.737	81
30	29510	127230	97.720	77
35	38967	148435	109.468	74

Şekil 4.5 M10 civata ve frezelenmiş imalat çeliği yüzey için Tork - Fon grafiği

4.1.2.3 Frezelenmiş (Yağlı) yüzey şartlarında yapılan deneyler

Frezelenmiş yağlı yüzey şartları ve yağlı civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,1$ ve $\mu = 0,1$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.7'de verilmiştir.

Çizelge 4.16 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	$\Delta F_{\ddot{O}N}$ (%)
25	17.276	106025	88750	84
30	20.731	127230	106499	84
35	24.186	148435	124249	84

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.17'de verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{OL}(N)$
	0,073	31755
	0,0815	35453
25	0,0785	34148
	0,0842	36627
	0,0725	31538
Ortalama	0,07794	33904
	0,1133	49286
	0,106	46110
30	0,1079	46937
	0,1165	50678
	0,1057	45980
Ortalama	0,10988	47798
	0,1604	69774
	0,1578	68643
35	0,1624	70644
	0,1655	71993
	0,1681	73124
Ortalama	0,16284	70835

Çizelge 4.17 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL} değerleri.

Çizelge 4.18 Uygulanan momente karşılık ölçülen F_{OL} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	$\Delta F_{ m ON}$ (%)
25	33904	106025	72.121	68
30	47798	127230	79.433	62
35	70835	148435	77.600	52

Şekil 4.6 M10 civata ve frezelenmiş imalat çeliği yağlı yüzey için Tork - Fon grafiği

4.1.3 M12x1,75 Civata deneyleri

4.1.3.1 Taşlanmış yüzey şartlarında yapılan deneyler

Taşlanmış yüzey şartları ve kuru civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,16$ ve $\mu = 0,15$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.19'da verilmiştir.

Çizelge 4.19 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
80	31.932	288654	256722	89
90	35.923	324735	288812	89
100	39.915	360817	320902	89

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.20'de verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{OL}(N)$
	0,1684	99373
	0,1995	117725
80	0,2191	129291
	0,2079	122682
	0,2094	123567
Ortalama	0,20086	118527
	0,2267	133776
	0,2383	140621
90	0,2211	130471
	0,2129	125632
	0,2154	127108
Ortalama	0,22288	131521
	0,2065	121856
	0,2477	146168
100	0,2506	147879
	0,2431	143453
	0,2375	140149
Ortalama	0,23708	139901

Çizelge 4.20 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL} değerleri.

Çizelge 4.21 Uygulanan momente karşılık ölçülen F_{OL} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
80	118527	288654	170126	59
90	131521	324735	193214	59
100	139901	360817	220916	61

Şekil 4.7 M12 civata ve taşlanmış imalat çeliği yüzey için Tork - Fon grafiği

4.1.3.2 Frezelenmiş (Kuru) yüzey şartlarında yapılan deneyler

Frezelenmiş yüzey şartları ve kuru civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,18$ ve $\mu = 0,15$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.22'de verilmiştir.

Çizelge 4.22 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{\ddot{O}N}(N)$	ΔF_{ON} (%)
30	11.256	108245	96989	90
40	15.008	144327	129319	90
50	18.759	180408	161649	90

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.23'de verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{OL}(N)$
	0,0543	32042
30	0,0536	31629
	0,0488	28797
	0,0532	31393
	0,051	30095
Ortalama	0,05218	30791
	0,0685	40422
	0,0728	42959
40	0,0736	43431
	0,076	44848
	0,0746	44021
Ortalama	0,0731	43136
	0,0734	43313
	0,0724	42723
50	0,0743	43844
	0,0796	46972
	0,0729	43018
Ortalama	0,07452	43974

Çizelge 4.23 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL} değerleri.

Çizelge 4.24 Uygulanan momente karşılık ölçülen F_{OL} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
30	30791	108245	77.454	72
40	43136	144327	101.190	70
50	43974	180408	136.434	76

Şeki 4.8 M12 civata ve frezelenmiş imalat çeliği yüzey için Tork - Fon grafiği

4.1.3.3 Frezelenmiş (Yağlı) yüzey şartlarında yapılan deneyler

Frezelenmiş yağlı yüzey şartları ve yağlı civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,1$ ve $\mu = 0,1$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.25'de verilmiştir.

Çizelge 4.25 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri..

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
30	17.570	108245	90675	84
40	23.427	144327	120900	84
50	29.284	180408	151125	84

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.26'da verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{OL}(N)$
30	0,0744	43903
	0,0799	47149
	0,0812	47916
	0,0822	48506
	0,0771	45497
Ortalama	0,07896	46594
40	0,1061	62610
	0,1074	63377
	0,1166	68806
	0,1056	62315
	0,1181	69691
Ortalama	0,11076	65359
50	0,1376	81198
	0,1445	85269
	0,1401	82673
	0,1445	85269
	0,1452	85683
Ortalama	0,14238	84018

Çizelge 4.26 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL} değerleri.

Çizelge 4.27 Uygulanan momente karşılık ölçülen F_{OL} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
30	46594	108245	61.651	57
40	65359	144327	78.967	55
50	84018	180408	96.390	53

Şekil 4.9 M12 civata ve frezelenmiş imalat çeliği yağlı yüzey için Tork - Fon grafiği

4.2 SS304 Paslanmaz Çelik Flanşlarla Yapılan Öngerilme Kuvveti Kaybı Deneyleri

4.2.1 M8x1,25 Civata deneyleri

4.2.1.1 Tornalanmış yüzey şartlarında yapılan deneyler

Tornalanmış yüzey şartları ve kuru civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,18$ ve $\mu = 0,15$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.28'de verilmiştir.

Çizelge 4.28 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri..

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
20	11,148	100787	89639	89
25	13,935	125983	112048	89
30	16,722	151180	134458	89

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.29'da verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{OL}(N)$
20	0.1027	29787
	0.1045	30309
	0.111	32194
	0.1083	31411
	0.1173	34021
Ortalama	0.10876	31545
25	0.1497	43419
	0.1546	44840
	0.1427	41388
	0.141	40895
	0.1493	43303
Ortalama	0.14746	42769
30	0.1536	44550
	0.154	44666
	0.1524	44202
	0.1651	47885
	0.1635	47421
Ortalama	0.15772	45745

Çizelge 4.29 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL}değerleri.

Çizelge 4.30 Uygulanan momente karşılık ölçülen F_{OL} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	$\Delta F_{ m ON}$ (%)
20	31545	100787	69,242	69
25	42769	125983	83,214	66
30	45745	151180	105,435	70

Şekil 4.10 M8 civata ve tornalanmış paslanmaz çelik yüzey için Tork - Fon grafiği

4.2.1.2 Frezelenmiş (Kuru) yüzey şartlarında yapılan deneyler

Frezelenmiş yüzey şartları ve kuru civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,18$ ve $\mu = 0,15$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.28'de verilmiştir.

Çizelge 4.31 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
5	2,787	25197	22410	89
10	5,574	50393	44819	89
15	8,361	75590	67229	89

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.32'de verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	F _{ÖL} (N)
	0.0305	8846
	0.0235	6816
5	0.0281	8150
	0.024	6961
	0.0277	8034
Ortalama	0.02676	7761
	0.0614	17808
	0.0578	16764
10	0.0561	16271
	0.0505	14647
	0.0512	14850
Ortalama	0.0554	16068
	0.0713	20680
	0.0757	21956
15	0.0774	22449
10	0.0727	21086
	0.0705	20448
Ortalama	0.07352	21324

Çizelge 4.32 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL} değerleri.

Çizelge 4.33 Uygulanan momente karşılık ölçülen F_{OL} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
5	7761	25197	17,435	69
10	16068	50393	34,325	68
15	21324	75590	54,266	72

Şekil 4.11 M8 civata ve frezelenmiş paslanmaz çelik yüzey için Tork - Fon grafiği

4.2.1.3 Frezelenmiş (Yağlı) yüzey şartlarında yapılan deneyler

Frezelenmiş yağlı yüzey şartları ve yağlı civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,1$ ve $\mu = 0,1$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.34'de verilmiştir.

Çizelge 4.34 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	$\Delta F_{\ddot{O}N}$ (%)
5	4,335	25197	20861	83
10	8,670	50393	41723	83
15	13,006	75590	62584	83

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.35'de verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	F _{ÖL} (N)
	0.0356	10325
	0.0373	10818
5	0.0376	10905
	0.0369	10702
	0.0339	9832
Ortalama	0.03626	10517
	0.0732	21231
	0.0788	22855
10	0.0774	22449
	0.0645	18707
	0.0715	20738
Ortalama	0.07308	21196
	0.0923	26770
	0.1063	30831
15	0.0877	25436
10	0.0914	26509
	0.0901	26132
Ortalama	0.09356	27136

Çizelge 4.35 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL} değerleri.

Çizelge 4.36 Uygulanan momente karşılık ölçülen F_{OL} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	$\Delta F_{ m ON}$ (%)
5	10517	25197	14,680	58
10	21196	50393	29,197	58
15	27136	75590	48,454	64

Şekil 4.12 M8 civata ve frezelenmiş paslanmaz çelik yağlı yüzey için Tork - Fon grafiği

4.2.2 M10x1,5 Civata deneyleri

4.2.2.1 Tornalanmış yüzey şartlarında yapılan deneyler

Tornalanmış yüzey şartları ve kuru civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,18$ ve $\mu = 0,15$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.37'de verilmiştir.

Çizelge 4.37 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
40	17,688	169640	151952	90
50	22,110	212051	189940	90
60	26,532	254461	227928	90

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.38'de verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{OL}(N)$
	0.1083	47111
	0.1164	50634
40	0.1171	50939
	0.1228	53418
	0.123	53505
Ortalama	0.11752	51121
	0.1153	50156
	0.1316	57246
50	0.1588	69078
	0.1519	66077
	0.1573	68426
Ortalama	0.14298	62196
	0.1817	79040
	0.1921	83564
60	0.1856	80736
	0.1981	86174
	0.195	84825
Ortalama	0.1905	82868

Çizelge 4.38 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL} değerleri.

Çizelge 4.39 Uygulanan momente karşılık ölçülen F_{OL} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
40	51121	169640	118,519	70
50	62196	212051	149,854	71
60	82868	254461	171,593	67

Şekil 4.13 M10 civata ve tornalanmış paslanmaz çelik yüzey için Tork - Fon grafiği

4.2.2.2 Frezelenmiş (Kuru) yüzey şartlarında yapılan deneyler

Frezelenmiş yüzey şartları ve kuru civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,18$ ve $\mu = 0,15$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.40'da verilmiştir.

Çizelge 4.40 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	$\Delta F_{\ddot{O}N}$ (%)
25	11,055	106025	94970	90
30	13,266	127230	113964	90
35	15,477	148435	132958	90

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.41'de verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{OL}(N)$
	0.0688	29928
	0.0672	29232
25	0.0669	29102
	0.0684	29754
	0.0666	28971
Ortalama	0.06758	29397
	0.0796	34626
	0.0804	34974
30	0.0823	35801
	0.0799	34757
	0.0797	34670
Ortalama	0.08038	34965
	0.0946	41151
	0.0957	41630
35	0.1056	45936
	0.0977	42500
	0.0981	42674
Ortalama	0.09834	42778

Çizelge 4.41 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL} değerleri.

Çizelge 4.42 Uygulanan momente karşılık ölçülen F_{OL} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
25	29397	106025	76,628	72
30	34965	127230	92,265	73
35	42778	148435	105,658	71

Şekil 4.14 M10 civata ve frezelenmiş paslanmaz çelik yüzey için Tork - Fon grafiği

4.2.2.3 Frezelenmiş (Yağlı) yüzey şartlarında yapılan deneyler

Frezelenmiş yağlı yüzey şartları ve yağlı civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,1$ ve $\mu = 0,1$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.43'de verilmiştir.

Çizelge 4.43 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	$\Delta F_{\ddot{O}N}$ (%)
25	17,276	106025	88750	84
30	20,731	127230	106499	84
35	24,186	148435	124249	84

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.44'de verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{OL}(N)$
	0,1005	43718
	0,0976	42456
25	0,1059	46067
	0,1011	43979
	0,1032	44892
Ortalama	0,10166	44222
	0,1157	50330
30	0,1181	51374
	0,1221	53114
	0,1215	52853
	0,1174	51069
Ortalama	0,11896	51748
	0,1642	71427
	0,1761	76604
35	0,1763	76691
	0,172	74820
	0,1778	77343
Ortalama	0,17328	75377

Çizelge 4.44 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL} değerleri.

Çizelge 4.45 Uygulanan momente karşılık ölçülen F_{OL} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
25	44222	106025	61.803	58
30	51748	127230	75.483	59
35	75377	148435	73.059	49

Şekil 4.15 M10 civata ve frezelenmiş paslanmaz çelik yağlı yüzey için Tork - Fon grafiği

4.2.3 M12x1,75 Civata deneyleri

4.2.3.1 Tornalanmış yüzey şartlarında yapılan deneyler

Tornalanmış yüzey şartları ve kuru civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,18$ ve $\mu = 0,15$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.46'da verilmiştir.

Çizelge 4.46 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	$\Delta F_{\ddot{O}N}$ (%)
80	30,015	288654	258638	90
90	33,767	324735	290968	90
100	37,519	360817	323298	90

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.47'de verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{OL}(N)$
	0.1266	74707
	0.1266	74707
80	0.1278	75415
	0.1409	83145
	0.1413	83381
Ortalama	0.13264	78271
	0,1877	110762
	0,2014	118846
90	0,1794	105864
	0,1715	101202
	0,1653	97544
Ortalama	0,18106	106844
	0,1611	95065
	0,1844	108814
100	0,1943	114656
	0,2063	121738
	0,2098	123803
Ortalama	0,19118	112815

Çizelge 4.47 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL} değerleri.

Çizelge 4.48 Uygulanan momente karşılık ölçülen F_{OL} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
80	78271	288654	210,383	73
90	106844	324735	217.892	67
100	112815	360817	248.002	69

Şekil 4.16 M12 civata ve tornalanmış paslanmaz çelik yüzey için Tork - Fon grafiği

4.2.3.2 Frezelenmiş (Kuru) yüzey şartlarında yapılan deneyler

Frezelenmiş yüzey şartları ve kuru civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,18$ ve $\mu = 0,15$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.49'da verilmiştir.

Çizelge 4.49 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{\ddot{O}N}(N)$	ΔF_{ON} (%)
30	11,256	108245	96989	90
40	15,008	144327	129319	90
50	18,759	180408	161649	90

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.50'de verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{OL}(N)$
	0.0541	31924
30	0.0579	34167
	0.0534	31511
	0.0528	31157
	0.054	31865
Ortalama	0.05444	32125
	0.0648	38238
	0.0663	39124
40	0.0673	39714
	0.0666	39301
	0.0682	40245
Ortalama	0.06664	39324
	0.0827	48801
	0.0842	49686
50	0.0853	50336
	0.0861	50808
	0.0875	51634
Ortalama	0.08516	50253

Çizelge 4.50 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL} değerleri.

Çizelge 4.51 Uygulanan momente karşılık ölçülen F_{OL} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
30	32125	108245	76,120	70
40	39324	144327	105,002	73
50	50253	180408	130,156	72

Şekil 4.17 M12 civata ve frezelenmiş paslanmaz çelik yüzey için Tork - F_{on} grafiği

4.2.3.3 Frezelenmiş (Yağlı) yüzey şartlarında yapılan deneyler

Frezelenmiş yağlı yüzey şartları ve yağlı civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,1$ ve $\mu = 0,1$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.52'de verilmiştir.

Çizelge 4.52 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	$\Delta F_{\ddot{O}N}$ (%)
30	17,570	108245	90675	84
40	23,427	144327	120900	84
50	29,284	180408	151125	84

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.53'de verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{ON}(N)$
	0,0836	49332
	0,0961	56709
30	0,0971	57299
	0,0893	52696
	0,0927	54702
Ortalama	0,09176	54148
Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{ON}(N)$
40	0,1226	72346
	0,1149	67802
	0,1277	75356
	0,1242	73290
	0,1169	68983
Ortalama	0,12126	71556
Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{ON}(N)$
	0,1438	84856
	0,1376	81198
50	0,1479	87276
	0,1432	84502
	0,1489	87866
Ortalama	0,14428	85140

Çizelge 4.53 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖN} değerleri.

Çizelge 4.54 Uygulanan momente karşılık ölçülen F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{\ddot{O}N}(N)$	$\Delta F_{\ddot{O}N}$ (%)
30	54148	108245	54.097	50
40	71556	144327	72.771	50
50	85140	180408	95.269	53

Şekil 4.18 M12 civata ve frezelenmiş paslanmaz çelik yağlı yüzey için Tork - Fon grafiği

4.3 Aluminyum Flanşlarla Yapılan Öngerilme Kuvveti Kaybı Deneyleri

4.3.1 M8x1,25 Civata deneyleri

4.3.1.1 Polisajlanmış yüzey şartlarında yapılan deneyler

Polisajlanmış yüzey şartları ve kuru civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,1$ ve $\mu = 0,15$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.55'de verilmiştir.

Çizelge 4.55 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
20	14.662	100787	86124	85
25	18.328	125983	107655	85
30	14.662	100787	86124	85

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.56'da verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	F _{ÖL} (N)
	0,1261	36574
	0,1412	40953
20	0,1446	41939
	0,1303	37792
	0,1355	39300
Ortalama	0,13554	39312
	0,1311	38024
	0,1472	42694
25	0,1821	52816
	0,1921	55716
	0,1907	55310
Ortalama	0,16864	48912
	0,2261	65578
	0,2209	64069
30	0,2144	62184
	0,2212	64156
	0,2118	61430
Ortalama	0,21888	63483

Çizelge 4.56 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL} değerleri.

Çizelge 4.57 Uygulanan momente karşılık ölçülen F_{OL} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
20	39312	100787	61.475	61
25	48912	125983	77.071	61
30	63483	151180	87.696	58

Şekil 4.19 M8 civata ve polisajli alüminyum yüzey için Tork - Fon grafiği

4.3.1.2 Frezelenmiş (Kuru) yüzey şartlarında yapılan deneyler

Frezelenmiş yüzey şartları ve kuru civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,15$ ve $\mu = 0,15$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.58'de verilmiştir.

Çizelge 4.58 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
5	3.062	25197	22134	88
10	6.124	50393	44269	88
15	9.187	75590	66403	88

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.59'da verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{OL}(N)$
	0,0369	10702
	0,0325	9426
5	0,0304	8817
	0,0272	7889
	0,0287	8324
Ortalama	0,03114	9032
	0,0622	18040
	0,0566	16416
10	0,0626	18156
	0,0613	17779
	0,06	17402
Ortalama	0,06054	17559
	0,0918	26625
	0,0908	26335
15	0,0962	27902
	0,097	28134
	0,0998	28946
Ortalama	0,09512	27588

Çizelge 4.59 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL} değerleri.

Çizelge 4.60 Uygulanan momente karşılık ölçülen F_{OL} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	$\Delta F_{ m ON}$ (%)
5	9032	25197	16.165	64
10	17559	50393	32.834	65
15	27588	75590	48.002	64

Şekil 4.20 M8 civata ve frezelenmiş alüminyum yüzey için Tork - Fon grafiği

4.3.1.3 Frezelenmiş (Yağlı) yüzey şartlarında yapılan deneyler

Frezelenmiş yağlı yüzey şartları ve yağlı civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,15$ ve $\mu = 0,15$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.61'de verilmiştir.

Çizelge 4.61 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	$\Delta F_{\ddot{O}N}$ (%)
5	4.781	25197	20416	81
10	9.562	50393	40832	81
15	14.342	75590	61248	81

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.62'de verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{OL}(N)$
	0,0492	14270
	0,044	12762
5	0,0479	13893
	0,0444	12878
	0,0462	13400
Ortalama	0,04634	13440
	0,0862	25001
	0,0892	25871
10	0,0856	24827
	0,0873	25320
	0,0807	23406
Ortalama	0,0858	24885
	0,1137	32977
	0,1274	36951
15	0,128	37125
	0,1155	33499
	0,1176	34108
Ortalama	0,12044	34932

Çizelge 4.62 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL} değerleri.

Çizelge 4.63 Uygulanan momente karşılık ölçülen F_{OL} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
5	13440	25197	11.756	47
10	24885	50393	25.508	51
15	34932	75590	40.658	54

Şekil 4.21 M8 civata ve frezelenmiş alüminyum yağlı yüzey için Tork - Fon grafiği

4.3.2 M10x1,5 Civata deneyleri

4.3.2.1 Polisajlanmis yüzey şartlarında yapılan deneyler

Polisajlanmış yüzey şartları ve kuru civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,1$ ve $\mu = 0,15$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.64'de verilmiştir.

Çizelge 4.64 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	$\Delta F_{\ddot{O}N}$ (%)
40	23.373	169640	146268	86
50	29.216	212051	182834	86
60	35.059	254461	219401	86

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.65'de verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{ON}(N)$
	0,1637	71210
	0,1596	69426
40	0,1541	67034
	0,1487	64685
	0,1498	65163
Ortalama	0,15518	67503
	0,1762	76647
	0,1761	76604
50	0,1933	84086
	0,2153	93656
	0,2293	99746
Ortalama	0,19804	86147
	0,1613	70166
	0,1987	86435
60	0,2281	99224
	0,2277	99050
	0,2876	125106
Ortalama	0,22068	95996

Çizelge 4.65 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL} değerleri.

Çizelge 4.66 Uygulanan momente karşılık ölçülen F_{OL} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	$\Delta F_{ m ON}$ (%)
40	67503	169640	102.137	60
50	86147	212051	125.903	59
60	95996	254461	158.465	62

Şekil 4.22 M10 civata ve polisajli alüminyum yüzey için Tork - Fon grafiği

4.3.2.2 Frezelenmiş (Kuru) yüzey şartlarında yapılan deneyler

Frezelenmiş yüzey şartları ve kuru civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,15$ ve $\mu = 0,15$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.67'de verilmiştir.

Çizelge 4.67 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	$\Delta F_{\ddot{O}N}$ (%)
25	12.165	106025	93861	89
30	14.598	127230	112633	89
35	17.031	148435	131405	89

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.68'de verilmiştir.

Cizelge 4 68	Uvgulanan	momente kars	sılık ölcüler	uzama (A	VL) ve För	değerleri
Ç120190 1.00	Journan		şiine orçaror		JU) V V U L	degentern.

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{OL}(N)$
	0,0788	34278
	0,0779	33887
25	0,0801	34844
	0,0841	36584
	0,0835	36323
Ortalama	0,08088	35183
30	0,0944	41064
	0,1063	46241
	0,0977	42500
	0,0963	41891
	0,098	42630
Ortalama	0,09854	42865
	0,1309	56942
	0,1264	54984
35	0,1293	56246
	0,1223	53201
	0,1198	52113
Ortalama	0,12574	54697

Çizelge 4.69 Uygulanan momente karşılık ölçülen F_{OL} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{\ddot{O}N}(N)$	ΔF_{ON} (%)
25	35183	106025	70.842	67
30	42865	127230	84.365	66
35	54697	148435	93.739	63

Şekil 4.23 M10 civata ve frezelenmiş alüminyum yüzey için Tork - Fon grafiği

4.3.2.3 Frezelenmiş (Yağlı) yüzey şartlarında yapılan deneyler

Frezelenmiş yağlı yüzey şartları ve yağlı civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,15$ ve $\mu = 0,15$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.70'de verilmiştir.

Çizelge 4.70 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	$\Delta F_{\ddot{O}N}$ (%)
25	19.090	106025	86936	82
30	22.908	127230	104323	82
35	26.725	148435	121710	82

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.71'de verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{OL}(N)$
	0,0991	43109
	0,0929	40412
25	0,1001	43544
	0,1054	45849
	0,0962	41847
Ortalama	0,09874	42952
	0,1345	58508
	0,1265	55028
30	0,1244	54114
	0,1275	55463
	0,1352	58812
Ortalama	0,12962	56385
	0,1761	76604
	0,1735	75473
35	0,1633	71036
	0,1705	74168
	0,1691	73559
Ortalama	0,1705	74168

Çizelge 4.71 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL} değerleri.

Çizelge 4.72 Uygulanan momente karşılık ölçülen F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
25	42952	106025	63.073	59
30	56385	127230	70.846	56
35	74168	148435	74.268	50

Şekil 4.24 M10 civata ve frezelenmiş alüminyum yağlı yüzey için Tork - Fon grafiği

4.3.3 M12x1,75 Civata deneyleri

4.3.3.1 Polisajlanmis yüzey şartlarında yapılan deneyler

Polisajlanmış yüzey şartları ve kuru civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,1$ ve $\mu = 0,15$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.73'de verilmiştir.

Çizelge 4.73 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	$\Delta F_{\ddot{O}N}$ (%)
80	39.500	288654	249154	86
90	44.437	324735	280298	86
100	49.375	360817	311442	86

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.74'de verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{OL}(N)$
	0,1531	90344
	0,174	102677
80	0,1615	95301
	0,1759	103799
	0,176	103858
Ortalama	0,1681	99196
	0,1746	103031
	0,1851	109228
90	0,1864	109995
	0,1855	109464
	0,1848	109050
Ortalama	0,18328	108154
100		
Ortalama		

Çizelge 4.74 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL} değerleri.

Çizelge 4.75 Uygulanan momente karşılık ölçülen F_{OL} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
80	99196	288654	189.458	66
90	108154	324735	216.582	67
100	0	360817	360.817	100

Şekil 4.25 M12 civata ve polisajlanmış alüminyum yüzey için Tork - Fon grafiği

4.3.3.2 Frezelenmiş (Kuru) yüzey şartlarında yapılan deneyler

Frezelenmiş yüzey şartları ve kuru civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,15$ ve $\mu = 0,15$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.76'da verilmiştir.

Çizelge 4.76 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{\ddot{O}N}(N)$	$\Delta F_{\ddot{O}N}$ (%)
30	12.369	108245	95876	89
40	16.493	144327	127834	89
50	20.616	180408	159793	89

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.77'de verilmiştir.

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{OL}(N)$
	0,0667	39360
30	0,0618	36468
	0,0586	34580
	0,0597	35229
	0,0611	36055
Ortalama	0,06158	36338
	0,0597	35229
	0,0725	42782
40	0,0654	38593
	0,0775	45733
	0,0685	40422
Ortalama	0,06872	40552
	0,0927	54702
	0,0921	54348
50	0,0904	53345
	0,101	59600
	0,0982	57948
Ortalama	0,09488	55989

Çizelge 4.77 Uygulanan momente karşılık ölçülen uzama (ΔL) ve F_{ÖL} değerleri.

Çizelge 4.78 Uygulanan momente karşılık ölçülen F_{OL} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	ΔF_{ON} (%)
30	36338	108245	71.907	66
40	40552	144327	103.775	72
50	55989	180408	124.420	69

Şekil 4.26 M12 civata ve frezelenmiş alüminyum yüzey için Tork - Fon grafiği

4.3.3.3 Frezelenmiş (Yağlı) yüzey şartlarında yapılan deneyler

Frezelenmiş yağlı yüzey şartları ve yağlı civata ile yapılan öngerilmeli civata bağlantısı için $\mu_s = 0,15$ ve $\mu = 0,15$ alınarak hesaplanan öngerilme kuvveti değerleri Çizelge 4.79'da verilmiştir.

Çizelge 4.79 Uygulanan momente karşılık formülle hesaplanan F_{ON} ve ideal sürtünmesiz halde F_{SSZ} değerleri.

Uygulanan Moment (Nm)	$F_{ON}(N)$	$F_{SSZ}(N)$	$\Delta F_{ON}(N)$	$\Delta F_{\ddot{O}N}$ (%)
30	19.387	108245	88858	82
40	25.849	144327	118477	82
50	32.312	180408	148097	82

Ultrasonik ölçüm cihazı ile ölçülen civatadaki uzama değerleri ve öngerilme kuvveti değerleri Çizelge 4.80'de verilmiştir.

Cizelge 4 80 I	Ivgulanan mome	nte karsılık ölcü	ilen uzama (AL)) ve För değerleri
Ç120160 1.00 (ygulullull illoille	nie Ruişink olçu		

Uygulanan Moment (Nm)	$\Delta L (mm)$	$F_{OL}(N)$
	0,1106	65265
	0,1002	59128
30	0,0931	54938
	0,1034	61016
	0,1011	59659
Ortalama	0,10168	60001
	0,125	73763
	0,124	73172
40	0,1262	74471
	0,1152	67980
	0,1129	66622
Ortalama	0,12066	71201
	0,1805	106513
	0,1785	105333
50	0,1717	101320
	0,1766	104212
	0,1801	106277
Ortalama	0,17748	104731

Çizelge 4.81 Uygulanan momente karşılık ölçülen F_{OL} ve ideal sürtünmesiz halde F_{SSZ} değerleri

Uygulanan Moment (Nm)	$F_{OL}(N)$	$F_{SSZ}(N)$	$\Delta F_{\ddot{O}N}(N)$	ΔF_{ON} (%)
30	60001	108245	48.244	45
40	71201	144327	73.125	51
50	104731	180408	75.677	42

Şekil 4.27 M12 civata ve frezelenmiş alüminyum yağlı yüzey için Tork - F_{on} grafiği

4.4 Ortalama Öngerilme Kuvveti Kayıpları

Deneylerden elde edilen veriler ışığında her bir koşul için yapılan ölçümlerin ortalaması alınarak, flanş malzemesi , yüzey işleme kalitesi , yağlama durumu ve civata ebadına bağlı olarak Çizelge 4.82 oluşturulmuştur. Benzer şekilde deneylerde elde edilen veriler ışığında formülle yapılacak hesaplamalarda kullanılmak üzere Çizelge 4.83'deki sürtünme katsayısı değerleri önerilmektedir.

Çizelge 4.82 Deneylerde ölçülen öngerilme kuvveti kaybı ortalamaları

		Frezelenmiş		Taşlanmış	Tornalanmış	Polisajlanmış
Flanş Malz.	Civata	Kuru	Yağlı	Kuru		
	M8	75%	58%	60%		
İmalat	M10	77%	61%	60%		
Çeliği	M12	72%	55%	60%		
	M8	70%	60%		68%	
Paslanmaz	M10	72%	56%		69%	
Çelik	M12	72%	51%		70%	
	M8	64%	50%			60%

Aluminyum	M10	65%	55%		61%
	M12	69%	46%		0%

Çizelge 4.83 Önerilen sürtünme katsayısı değerleri

Flanş Malz.		Frezelenmiş		Taşlanmış	Tornalanmış	Polisajlanmış
	μm	Kuru	Yağlı	Kuru		
İmalat	μ_{s}	0,05	0,02	0,05		
Çeliği	μ	0,07	0,04	0,01		
Paslanmaz	μ_{s}	0,05	0,02		0,05	
Çelik	μ	0,05	0,03		0,05	
Aluminyum	μ_{s}	0,05	0,02			0,05
	μ	0,025	0,03			0,01
4.5 Yüzey Pürüzlülüğü Kaybı Deneyleri

Civatalarda sıkma esnasında meydana gelen pürüz ezilme miktarlarını ölçmeden önce flanş malzemelerinin HB10 Brinell yüzey sertlikleri, sertlik ölçme cihazında ölçülmüştür. Ölçüm esnasında 62,5 kg önyük uygulanmış ve 2,5 mm çaplı bilye kullanılmıştır. Ölçülen değerler Çizelge 4.84'de verilmiştir. Daha sonra çift flanşlı bağlantı durumu için flanşlar temas yüzeylerinin, civata oturma yüzeylerinin başlangıç pürüzlülükleri ölçüldükten sonra civata ile sıkılmıştır. Bunun ardından bağlantı, civata gevşetilerek ayrılmış ve temas yüzeylerinin pürüzlülükleri tekrar ölçülerek yüzey pürüzlülüğündeki azalma hesaplanmıştır. Aynı flanşlar civata ile ikinci kez tekrar sıkılmıştır. Flanşların tekrar kullanılması durumunda pürüzlerdeki ezilmenin devam edip etmediği gözlenmeye çalışılmıştır. Civata başının oturma yüzeyi civata sıkılırken sürtünmeden dolayı çizildiği için sağlıklı ölçüm alınamamıştır. Bu sebeple civata başı altında meydana gelen yüzey pürüzlülüğü kaybı miktarı somun altındakiyle eşdeğerde olduğu kabul edilerek hesaplamalar yapılmıştır. Sonuçlar çizelgelerde verilmiştir.

Cizelge 4.84	Denev	numunelerinin	HB	sertlik	değerleri
, . 0	5				

Numune Malzemesi	Ölç	ülen sertlik (Ölçüm ortalaması (HB)	
Alüminyum	76,6	77,4	77	77
Paslanmaz Çelik	131,6	135,5	136,5	134,5
İmalat Çeliği	119,8	123	119	120,6

4.5.1 C1050 İmalat çeliği flanşlarla yapılan yüzey pürüzlülüğü kaybı deneyleri

Çizelge 4.85 İmalat çeliği flanş ve M8 civata kullanılarak ölçülen yüzey pürüzlülüğü kayıpları

Frezelenmiş İmalat Çeliği M8 Civata Tork = 15 Nm											
R _{ZC}	F	R _{Zfü} (µm	ı)	F	R _{Zfa} (µm	ı)	ŀ	R _{ZS} (µm)		
(µm)											
Önce	Önce	Önce	Önce	Önce	Önce	Önce	Önce	Önce	Önce		
4,56	4,56	4,56	4,56	4,56	4,56	4,56	4,56	4,56	4,56		
4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42	4,42		
4,18	4,18	4,18	4,18	4,18	4,18	4,18	4,18	4,18	4,18		
4,14	4,14	4,14	4,14	4,14	4,14	4,14	4,14	4,14	4,14		
	Frezelenmiş İmalat Çeliği M8 Civata Tork = 25 Nm										
R _{ZC}	R _{Zfü} (µm)		F	R _{Zfa} (µm	ı)	I	R _{ZS} (µm)			
(µm)											
Öraa	Öraa	Öraa	Öraa	Öraa	Öraa	Öraa	Öraa	Öraa	Öraa		
0110	4.10	01100	0110	0110	0110	0110	4.10	01100	0110		
4,12	4,12	4,12	4,12	4,12	4,12	4,12	4,12	4,12	4,12		
4,65	4,65	4,65	4,65	4,65	4,65	4,65	4,65	4,65	4,65		
4,52	4,52	4,52	4,52	4,52	4,52	4,52	4,52	4,52	4,52		
4,33	4,33	4,33	4,33	4,33	4,33	4,33	4,33	4,33	4,33		
	Fre	zelenmi	iş İmala	t Çeliği	M8 Cir	vata To	rk = 35	Nm			
R _{ZC}	F	R _{Zfü} (µm	ı)	F	R _{Zfa} (µm	ı)	I	R _{ZS} (µm)		
(µm)											
Önce	Önce	Önce	Önce	Önce	Önce	Önce	Önce	Önce	Önce		
4,21	4,21	4,21	4,21	4,21	4,21	4,21	4,21	4,21	4,21		
4,23	4,23	4,23	4,23	4,23	4,23	4,23	4,23	4,23	4,23		
4,31	4,31	4,31	4,31	4,31	4,31	4,31	4,31	4,31	4,31		
4,15	4,15	4,15	4,15	4,15	4,15	4,15	4,15	4,15	4,15		

	Frezelenmiş İmalat Çeliği M10 Civata Tork = 15 Nm											
R _{ZC}	F	R _{Zfü} (µm	n)	F	R _{Zfa} (µm	ı)	I	R _{ZS} (µm)				
(µm)		1	2		1	2		1 2				
Önce	Önce	1. Denev	Z. Denev	Önce	1. Denev	Z. Deney	Önce	1. Denev	Z. Denev			
4.32	1 19	1 02	1 02	4 2 1	1 05	1 05	1 19	1 2 2	1 2 2			
4,32	4,48	4,05	4,03	4,31	4,05	4,05	4,48	4,32	4,32			
4,24	4,42	4,1	4,1	4,36	4,18	4,18	4,29	4	4			
4,36	4,34	4,05	4,05	4,28	3,96	3,95	4,42	4,11	4,11			
4,18	4,14	3,94	3,94	4,18	3,75	3,75	4,31	4,18	4,18			
Frezelenmiş İmalat Çeliği M10 Civata Tork = 25 Nm												
R _{ZC}	R_{ZC} $R_{Zfu}(\mu m)$			ŀ	R _{Zfa} (µm	ı)	I	R _{ZS} (µm)			
(µm)												
		1.	2.		1.	2.		1.	2.			
Önce	Önce	Deney	Deney	Önce	Deney	Deney	Önce	Deney	Deney			
4,99	5,11	4,63	4,63	4,48	4,05	4,05	4,34	4	4			
4,62	4,54	4,25	4,25	4,29	4,01	4,01	4,11	3,81	3,81			
4,61	4,65	4,32	4,32	4,2	4,14	4,14	4,29	3,88	3,88			
4,74	4,48	4,05	4,05	4,38	3,95	3,95	4,18	3,95	3,95			
	Frez	zelenmi	ș İmalat	Çeliği	M10 Ci	vata To	ork = 35	Nm	1			
R _{ZC}	F	R _{Zfü} (µm	ı)	F	R _{Zfa} (µm	I)	Ι	R _{ZS} (µm)			
(µm)												
		1.	2.		1.	2.		1.	2.			
Önce	Önce	Deney	Deney	Önce	Deney	Deney	Önce	Deney	Deney			
5,82	5,98	5,29	5,29	4,48	4,08	4,08	4,65	4,29	4,28			
5,11	5,21	4,87	4,87	4,29	3,98	3,98	4,62	4,51	4,5			
5,02	5,05	4,75	4,75	4,39	4,05	4,02	4,23	4,11	4,11			
4,91	4,95	4,61	4,61	4,29	3,71	3,71	4,41	4,05	4,05			

Çizelge 4.86 İmalat çeliği flanş ve M10 civata kullanılarak ölçülen yüzey pürüzlülüğü kayıpları

	Frez	zelenmi	ș İmalat	Çeliği	M12 Ci	vata To	ork = 15	Nm	
R _{ZC}	F	R _{Zfü} (μm	n)	$R_{Zfa}(\mu m)$			R _{ZS} (µm)		
(µm)									
Önce	Önce	Önce	Önce	Önce	Önce	Önce	Önce	Önce	Önce
4,52	4,52	4,52	4,52	4,52	4,52	4,52	4,52	4,52	4,52
4,36	4,36	4,36	4,36	4,36	4,36	4,36	4,36	4,36	4,36
4,38	4,38	4,38	4,38	4,38	4,38	4,38	4,38	4,38	4,38
4,15	4,15	4,15	4,15	4,15	4,15	4,15	4,15	4,15	4,15
Frezelenmiş İmalat Çeliği M12 Civata Tork = 25 Nm									
R _{ZC}	$R_{Zfu}(\mu m)$			F	R _{Zfa} (µm	ı)	I	R _{ZS} (µm)
(µm)									
Önce	Önce	Önce	Önce	Önce	Önce	Önce	Önce	Önce	Önce
4,41	4,41	4,41	4,41	4,41	4,41	4,41	4,41	4,41	4,41
4,38	4,38	4,38	4,38	4,38	4,38	4,38	4,38	4,38	4,38
4,26	4,26	4,26	4,26	4,26	4,26	4,26	4,26	4,26	4,26
4,4	4,4	4,4	4,4	4,4	4,4	4,4	4,4	4,4	4,4
	Frez	zelenmi	ș İmalat	Çeliği	M12 Ci	vata To	ork = 35	Nm	
R _{ZC}	F	R _{Zfü} (µm	ı)	F	R _{Zfa} (µm	ı)	I	R _{ZS} (µm)
(µm)									
Önce	Önce	Önce	Önce	Önce	Önce	Önce	Önce	Önce	Önce
4,15	4,15	4,15	4,15	4,15	4,15	4,15	4,15	4,15	4,15
4,29	4,29	4,29	4,29	4,29	4,29	4,29	4,29	4,29	4,29
4,27	4,27	4,27	4,27	4,27	4,27	4,27	4,27	4,27	4,27
4,12	4,12	4,12	4,12	4,12	4,12	4,12	4,12	4,12	4,12

Çizelge 4.87 İmalat çeliği flanş ve M12 civata kullanılarak ölçülen yüzey pürüzlülüğü kayıpları

M8		1. Deney		2. Deney			
Tork	R _{Zfü}	$\Delta R_{Zf\ddot{u}}$	%	R _{Zfü}	$\Delta R_{Zf\ddot{u}}$	%	
(Nm)	(µm)	(µm)		(µm)	(µm)		
15	4,41	0,45	10	3,97	0,02	0,4	
25	4,37	0,58	13	3,79	0	0	
35	4,21	0,49	11	3,73	0	0	
Tork	R _{Zfa}	ΔR_{Zfa}	%	R _{Zfa}	ΔR_{Zfa}	%	
(Nm)	(µm)	(µm)		(µm)	(µm)		
15	4,26	0,39	9	3,86	0	0	
25	4,25	0,41	9,7	3,84	0	0	
35	4,26	0,5	11	3,76	0,1	0,1	
Tork	R _{ZS}	ΔR_{ZS}	%	R _{ZS}	ΔR_{ZS}	%	
(Nm)	(µm)	(µm)		(µm)	(µm)		
15	4,42	0,37	8,3	4,05	0	0	
25	4,33	0,42	9,6	3,91	0	0	
35	4,25	0,48	11	3,77	0,01	0,2	

Çizelge 4.88 İmalat çeliği flanş ve M8 civata için sıkma momentine bağlı yüzey pürüzlülüğü kaybı ortalamaları

Çizelge 4.89 İmalat çeliği flanş ve M10 civata için sıkma momentine bağlı yüzey pürüzlülüğü kaybı ortalamaları

M10		1. Deney			2. Deney	
Tork	R _{Zfü}	ΔR_{Zfi}	%	R _{Zfü}	$\Delta R_{Zf\ddot{u}}$	%
(Nm)	(µm)	(µm)		(µm)	(µm)	
15	4,35	0,32	7,2	4,03	0	0
25	4,7	0,38	8,1	4,31	0	0
35	5,3	0,42	7,8	4,8	0	0
Tork	R _{Zfa}	ΔR_{Zfa}	%	R _{Zfa}	ΔR_{Zfa}	%
(Nm)	(µm)	(µm)		(µm)	(µm)	
15	4,28	0,3	6,9	3,99	0	0
25	4,34	0,3	6,9	4,04	0	0
35	4,36	0,41	9,3	3,96	0	0,1

Tork	R _{ZS}	ΔR_{ZS}	%	R _{ZS}	ΔR_{ZS}	%
(Nm)	(µm)	(µm)		(µm)	(µm)	
15	4,38	0,22	5	4,15	0	0
25	4,23	0,32	7,5	3,91	0	0
35	4,48	0,24	5,3	4,24	0	0

Çizelge 4.90 İmalat çeliği flanş ve M12 civata için sıkma momentine bağlı yüzey pürüzlülüğü kaybı ortalamaları

M12		1. Deney		2. Deney			
Tork	R _{Zfü}	$\Delta R_{Zf\ddot{u}}$	%	R _{Zfü}	$\Delta R_{Zf\ddot{u}}$	%	
(Nm)	(µm)	(µm)		(µm)	(µm)		
15	4,32	0,25	5,9	4,06	0	0	
25	4,28	0,28	6,6	4,0	0,04	1	
35	4,33	0,35	8,2	3,98	0	0	
Tork	R _{Zfa}	ΔR_{Zfa}	%	R _{Zfa}	ΔR_{Zfa}	%	
(Nm)	(µm)	(µm)		(µm)	(µm)		
15	4,31	0,25	5,7	4,07	0	0	
25	4,35	0,23	5,2	4,12	0	0	
35	4,35	0,23	5,2	4,12	0	0	
Tork	R _{ZS}	ΔR_{ZS}	%	R _{ZS}	ΔR_{ZS}	%	
(Nm)	(µm)	(µm)		(µm)	(µm)		
15	4,35	0,13	2,8	4,22	0,02	0,3	
25	4,22	0,16	3,7	4,07	0,05	-1	
35	4,31	0,2	4,9	4,09	0	0	

Çizelge 4.91 İmalat çeliği flanş ve M8 Civata için sıkma momentine bağlı toplam yüzey pürüzlülüğü kaybı

M8		1. Deney		2. Deney			
Tork (Nm)	R _Z (µm)	ΔR_Z (µm)	%	R _Z (µm)	ΔR_Z (µm)	%	
15	17,51	1,58	9	15,93	0,02	0,1	
25	17,28	1,83	10	15,45	0,00	0,0	
35	16,97	1,95	11,5	15	0,01	0,1	

M10		1. Deney		2. Deney		
Tork	R _Z	ΔR_Z	%	R _Z	ΔR_Z	%
(Nm)	(µm)	(µm)		(µm)	(µm)	
15	17,39	1,06	6	16,33	0,00	0,0
25	17,5	1,32	7,5	16,18	0,00	0,0
35	18,62	1,31	7	17,31	0,01	0,1

Çizelge 4.92 İmalat çeliği flanş ve M10 Civata için sıkma momentine bağlı toplam yüzey pürüzlülüğü kaybı

Çizelge 4.93 İmalat çeliği flanş ve M12 Civata için sıkma momentine bağlı toplam yüzey pürüzlülüğü kaybı

M12		1. Deney		2. Deney		
Tork (Nm)	R _Z (µm)	ΔR_Z (µm)	%	R _Z (µm)	ΔR_Z (µm)	%
15	17,33	0,76	4,4	16,57	0,00	0,0
25	17,07	0,83	4,8	16,24	0,00	0,0
35	17,3	0,98	5,6	16,32	0,01	0,1

Çizelge 4.94 Frezelenmiş imalat çeliği yüzeyler için Literatürdeki formül ve tablolardan hesaplanan yüzey pürüzlülüğü kaybı değerleri

	STEINHILPER		RENDE 2000		DECKER		Deney Sonucu	
Civata	ΔR_Z	ΔR_Z %	ΔR_Z	ΔR_Z %	ΔR_Z	ΔR_Z %	ΔR_Z	ΔR_Z %
	(µm)		(µm)		(µm)		(µm)	
M8	2	8,8	2,25	10	4,5	20	1,95	11,5
M10	1,86	8,2	2,25	10	4	17	1,32	7,5
M12	1,73	7,7	2,25	10	3,5	15	0,98	5,6

Çizelge 4.94'de deneyler sonucu elde edilen yüzey pürüz kaybı değerlerinden en büyük olan değer alınmıştır. Bu değer uygulamada bize oluşabilecek maksimum yüzey pürüzlülüğü kaybını göz önünde bulundurarak civata balantısını hesaplamamızı sağlayacaktır. Bu sayede beklenenden daha az pürüz kaybı oluşsada biz en kötü ihtimale göre hesaplarımızı yapacağımız için bir miktar emniyet payı da bırakılmış olacaktır.

Şekil 4.28 Frezelenmiş imalat çeliği flanşlar için Moment - ΔR_Z grafiği

Şekil 4.29 Frezelenmiş imalat çeliği flanşlar için Moment - $\%\Delta R_Z$ grafiği

4.5.2 SS 304 Paslanmaz çelik flanşlarla yapılan yüzey pürüzlülüğü kaybı deneyleri

Çizelge 4.95 Paslanmaz çelik flanş ve M8 civata kullanılarak ölçülen yüzey pürüzlülüğü kayıpları

	Frezelenmiş Paslanmaz Çelik M8 Civata Tork =15 Nm									
R _{ZC}	F	R _{Zfü} (µm	ı)	F	R _{Zfa} (μm	l)	I	R _{ZS} (µm	.)	
(µm)										
ä	ä	1.	2.	ä	1.	2.	ä	1.	2.	
Once	Once	Deney	Deney	Once	Deney	Deney	Once	Deney	Deney	
2,35	2,42	2,22	2,2	2,15	2,05	2,06	2,35	2,15	2,14	
2,47	2,4	2,31	2,31	2,23	2,12	2,12	2,38	2,21	2,21	
2,34	2,51	2,32	2,32	2,47	2,15	2,11	2,46	2,31	2,29	
2,15	2,37	2,15	2,15	2,18	1,96	1,95	2,42	2,21	2,18	
	Freze	elenmiş	Paslanr	naz Çel	ik M8 C	Civata T	ork = 2	5 Nm	1	
R _{ZC}	F	R _{Zfü} (µm	ı)	ŀ	R _{Zfa} (µm	ı)	I	R _{ZS} (µm	.)	
(µm)	2.iu (F)						20 (1.)			
		1.	2.		1.	2.		1.	2.	
Önce	Önce	Deney	Deney	Önce	Deney	Deney	Önce	Deney	Deney	
2,35	2,21	1,96	1,96	2,21	1,98	2	2,35	2,15	2,15	
2,48	2,45	2,18	2,18	2,33	2,03	2,01	2,37	2,12	2,12	
2,45	2,37	2,21	2,2	2,41	2,31	2,3	2,14	2	2	
2,18	2,32	2,05	2,05	2,27	2,12	2,13	2,23	2,05	2,05	
	Freze	elenmiş	Paslanr	naz Çel	ik M8 C	Civata T	ork = 3	5 Nm		
R _{ZC}	F	R _{Zfü} (µm	ı)	F	R _{Zfa} (µm	I)	I	R _{ZS} (µm)	
(µm)										
		1.	2.		1.	2.		1.	2.	
Önce	Önce	Deney	Deney	Önce	Deney	Deney	Önce	Deney	Deney	
2,4	2,29	2,01	2	2,31	2	2	2,27	1,98	1,98	
2,51	2,35	2,07	2,05	2,23	2,11	2,1	2,32	2,1	2,1	
2,47	2,47	2,18	2,18	2,45	2,23	2,22	2,37	2,09	2,09	
2,18	2,23	1,95	1,95	2,47	2,31	2,31	2,14	1,82	1,8	

	Frezelenmiş Paslanmaz Çelik M10 Civata Tork = 15 Nm									
R _{ZC}	F	R _{Zfü} (µm	ı)	F	R _{Zfa} (µm	ı)	I	R _{ZS} (µm)	
(µm)			1		1			1	ſ	
		1.	2.		1.	2.		1.	2.	
Önce	Önce	Deney	Deney	Önce	Deney	Deney	Önce	Deney	Deney	
2,21	2,14	2,05	2,05	2,35	2,22	2,2	2,21	2,12	2,12	
2,35	2,23	2,13	2,11	2,45	2,38	2,38	2,35	2,26	2,26	
2,37	2,18	2,07	2,07	2,19	2,04	2,04	2,37	2,24	2,23	
2,21	2,37	2,25	2,25	2,24	2,15	2,15	2,21	2,14	2,15	
	Freze	lenmiş 1	Paslanm	naz Çeli	k M10	Civata 🕻	$\Gamma ork = 2$	25 Nm	1	
R _{ZC}	F	R _{Zfü} (µm	n)	F	R _{Zfa} (µm	n)	I	R _{ZS} (µm)	
(µm)				2						
		1.	2.		1.	2.		1.	2.	
Önce	Önce	Deney	Deney	Önce	Deney	Deney	Önce	Deney	Deney	
2,35	2,35	2,35	2,35	2,35	2,35	2,35	2,35	2,35	2,35	
2,48	2,48	2,48	2,48	2,48	2,48	2,48	2,48	2,48	2,48	
2,45	2,45	2,45	2,45	2,45	2,45	2,45	2,45	2,45	2,45	
2,18	2,18	2,18	2,18	2,18	2,18	2,18	2,18	2,18	2,18	
	Freze	lenmiş 1	Paslanm	naz Çeli	k M10	Civata 🗌	$\Gamma ork = 3$	35 Nm		
R _{ZC}	F	R _{Zfü} (µm	ı)	F	R _{Zfa} (µm	ı)	I	R _{ZS} (µm)	
(µm)										
		1.	2.		1.	2.		1.	2.	
Önce	Önce	Deney	Deney	Önce	Deney	Deney	Önce	Deney	Deney	
2,58	2,3	1,9	1,9	2,37	2,05	1,99	2,58	2,32	2,3	
2,21	2,41	2,32	2,3	2,21	2,18	2,18	2,21	2,11	2,11	
2,33	2,27	2,15	2,14	2,35	2,31	2,3	2,33	2,21	2,2	
2,28	2,32	2,21	2,2	2,48	2,12	2,1	2,28	2,15	2,15	

Çizelge 4.96 Paslanmaz çelik flanş ve M10 civata kullanılarak ölçülen yüzey pürüzlülüğü kayıpları

	Frezelenmiş Paslanmaz Çelik M12 Civata Tork = 15 Nm									
R _{ZC}	F	R _{Zfü} (µm	ı)	ŀ	R _{Zfa} (µm	n)	I	R _{zs} (µm)	
(µm)										
		1.	2.		1.	2.		1.	2.	
Önce	Önce	Deney	Deney	Önce	Deney	Deney	Önce	Deney	Deney	
2,35	2,27	2,2	2,2	2,25	2,19	2,19	2,35	2,28	2,28	
2,38	2,41	2,35	2,35	2,23	2,15	2,15	2,47	2,35	2,33	
2,46	2,18	2,1	2,1	2,36	2,31	2,3	2,34	2,27	2,26	
2,42	2,16	2,08	2,03	2,14	2,09	2,08	2,15	2,1	2,1	
	Freze	lenmiş 1	Paslanm	naz Çeli	k M12	Civata	$\Gamma ork = 2$	25 Nm	1	
R _{ZC}	F	R _{Zfü} (µn	ı)	F	R _{Zfa} (µm	ı)	I	R _{ZS} (µm)	
(µm)										
		1.	2.		1.	2.		1.	2.	
Önce	Önce	Deney	Deney	Önce	Deney	Deney	Önce	Deney	Deney	
2,35	2,28	2,22	2,22	2,31	2,23	2,23	2,25	2,19	2,19	
2,37	2,35	2,18	2,17	2,42	2,28	2,28	2,37	2,23	2,22	
2,14	2,42	2,31	2,31	2,12	2,06	2,06	2,26	2,18	2,19	
2,23	2,45	2,36	2,35	2,36	2,28	2,27	2,27	2,2	2,2	
	Freze	lenmiş 1	Paslanm	naz Çeli	k M12	Civata	$\Gamma ork = 3$	35 Nm		
R _{ZC}	F	R _{Zfü} (µm	n)	F	R _{Zfa} (µm	ı)	I	R _{ZS} (µm)	
(µm)										
		1.	2.		1.	2.		1.	2.	
Önce	Önce	Deney	Deney	Önce	Deney	Deney	Önce	Deney	Deney	
2,27	2,02	1,73	1,73	2,48	2,24	2,2	2,4	2,14	2,14	
2,32	2,25	2,18	2,17	2,45	2,32	2,32	2,51	2,41	2,4	
2,37	2,41	2,32	2,32	2,37	2,24	2,25	2,47	2,38	2,39	
2,14	2,38	2,25	2,22	2,21	2,1	2,1	2,18	1,95	1,95	

Çizelge 4.97 Paslanmaz çelik flanş ve M12 civata kullanılarak ölçülen yüzey pürüzlülüğü kayıpları

M8		1. Deney			2. Deney	
Tork	R _{Zfü}	ΔR_{Zfu}	%	R _{Zfü}	$\Delta R_{Zf\ddot{u}}$	%
(Nm)	(µm)	(µm)		(µm)	(µm)	
15	2,43	0,18	7,2	2,25	0	0
25	2,34	0,24	10	2,1	0	0,1
35	2,34	0,25	10	2,08	0	0,6
Tork	R _{Zfa}	ΔR_{Zfa}	%	R _{Zfa}	ΔR_{Zfa}	%
(Nm)	(µm)	(µm)		(µm)	(µm)	
15	2,26	0,19	8,3	2,07	0	0,4
25	2,31	0,2	8,4	2,11	0	0
35	2,37	0,2	8,5	2,16	0	0,2
Tork	R _{ZS}	ΔR_{ZS}	%	R _{ZS}	ΔR_{ZS}	%
(Nm)	(µm)	(µm)		(µm)	(µm)	
15	2,4	0,18	7,6	2,22	0	0
25	2,27	0,19	8,5	2,08	0	0
35	2,28	0,28	12	2	0	0,2

Çizelge 4.98 Paslanmaz çelik flanş ve M8 civata için sıkma momentine bağlı yüzey pürüzlülüğü kaybı ortalamaları

Çizelge 4.99 Paslanmaz çelik flanş ve M10 civata için sıkma momentine bağlı yüzey pürüzlülüğü kaybı ortalamaları

M10		1. Deney		2. Deney			
Tork	R _{Zfü}	$\Delta R_{Zf\ddot{u}}$	%	R _{Zfü}	$\Delta R_{Zf\ddot{u}}$	%	
(Nm)	(µm)	(µm)		(µm)	(µm)		
15	2,23	0,11	4,7	2,12	0	0,2	
25	2,49	0,19	7,4	2,3	0	0,4	
35	2,33	0,18	7,7	2,15	0,01	0,4	
Tork	R _{Zfa}	ΔR_{Zfa}	%	R _{Zfa}	ΔR_{Zfa}	%	
(Nm)	(µm)	(µm)		(µm)	(µm)		
15	2,31	0,11	4,7	2,2	0	0,2	
25	2,35	0,15	6,5	2,2	0,06	2,7	
35	2,35	0,19	7,9	2,17	0,02	1	

Tork	R _{ZS}	ΔR_{ZS}	%	R _{ZS}	ΔR_{ZS}	%
(Nm)	(µm)	(µm)		(µm)	(µm)	
15	2,29	0,1	4,1	2,19	0	0
25	2,37	0,16	6,8	2,21	0,06	2,95
35	2,35	0,15	6,5	2,2	0,01	0,3

Çizelge 4.100 Paslanmaz çelik flanş ve M12 civata için sıkma momentine bağlı yüzey pürüzlülüğü kaybı ortalamaları

M12		1. Deney		2. Deney			
Tork	R _{Zfü}	$\Delta R_{Zf\ddot{u}}$	%	R _{Zfü}	$\Delta R_{Zf\ddot{u}}$	%	
(Nm)	(µm)	(µm)		(µm)	(µm)		
15	2,26	0,07	3,2	2,19	0,01	0,5	
25	2,38	0,11	4,5	2,27	0,01	0,2	
35	2,27	0,15	6,4	2,12	0,01	0,5	
Tork	R _{Zfa}	ΔR_{Zfa}	%	R _{Zfa}	ΔR_{Zfa}	%	
(Nm)	(µm)	(µm)		(µm)	(µm)		
15	2,25	0,06	2,6	2,19	0,01	0,2	
25	2,3	0,09	3,9	2,21	0,01	0,1	
35	2,38	0,15	6,4	2,23	0,01	0,3	
Tork	R _{ZS}	ΔR_{ZS}	%	R _{ZS}	ΔR_{ZS}	%	
(Nm)	(µm)	(µm)		(µm)	(µm)		
15	2,33	0,08	3,3	2,25	0,01	0,3	
25	2,29	0,09	3,8	2,2	0	0	
35	2,39	0,17	7,1	2,22	0	0	

Çizelge 4.101 Paslanmaz çelik flanş ve M8 Civata için sıkma momentine bağlı toplam yüzey pürüzlülüğü kaybı

M8		1. Deney		2. Deney			
Tork (Nm)	R_Z (µm)	ΔR_Z (µm)	%	R_Z (µm)	ΔR_Z (µm)	%	
15	9,49	0,73	7,7	8,76	0,03	0,3	
25	9,19	0,82	8,9	8,37	0,00	0	
35	9,27	1,01	10,8	8,26	0,03	0,3	

Çizelge 4.102 Paslanmaz çelik flanş ve M10 Civata için sıkma momentine bağlı toplam yüzey pürüzlülüğü kaybı

M10		1. Deney		2. Deney			
Tork (Nm)	R _Z (µm)	ΔR_Z (µm)	%	R _Z (µm)	ΔR_Z (µm)	%	
15	9,12	0,42	4,6	8,7	0,01	0,1	
25	9,58	0,66	6,8	8,92	0,07	1,1	
35	9,38	0,67	7,1	8,71	0,02	0,2	

Çizelge 4.103 Paslanmaz çelik flanş ve M12 Civata için sıkma momentine bağlı toplam yüzey pürüzlülüğü kaybı

M12		1. Deney		2. Deney			
Tork	R _Z	ΔR_Z	%	R _Z	ΔR_Z	%	
(Nm)	(µm)	(µm)		(µm)	(µm)		
15	9,17	0,29	3,1	8,88	0,03	0,3	
25	9,26	0,38	4,1	8,88	0,01	0,1	
35	9,43	0,64	6,8	8,79	0,02	0,2	

Çizelge 4.104 Frezelenmiş paslanmaz çelik yüzeyler için Literatürdeki formül ve tablolardan hesaplanan yüzey pürüzlülüğü kaybı değerleri

	STEINHILPER		RENDE 2000		DECKER		Deney Sonucu	
Civata	ΔR_Z	ΔR_Z %	ΔR_Z	ΔR_Z %	ΔR_Z	ΔR_Z %	ΔR_Z	ΔR_Z %
	(µm)		(µm)		(µm)		(µm)	
M8	2	16	1,25	10	4,5	20	1,01	10,8
M10	1,86	14	1,25	10	4	17	0,67	7,1
M12	1,73	13	1,25	10	3,5	15	0,64	6,8

Şekil 4.30 Frezelenmiş paslanmaz çelik flanşlar için Moment - ΔR_Z grafiği

Şekil 4.31 Frezelenmiş paslanmaz çelik flanşlar için Moment - ΔR_Z grafiği

4.5.3 Alüminyum flanşlarla yapılan yüzey pürüzlülüğü kaybı deneyleri

Çizelge 4.105 Alüminyum flanş ve M8 civata kullanılarak ölçülen yüzey pürüzlülüğü kayıpları

	Fre	ezelenm	iş Alün	ninyum	M8 Civ	vata Tor	k = 151	Nm	
R _{ZC}	F	R _{Zfü} (µm	ı)	F	R _{Zfa} (µm	ı)	I	R _{ZS} (µm	.)
(µm)									
		1.	2.		1.	2.		1.	2.
Önce	Önce	Deney	Deney	Önce	Deney	Deney	Önce	Deney	Deney
3,85	3,84	3,12	3,1	3,96	3,32	3,3	3,95	3,51	3,65
3,74	3,8	3,21	3,2	3,97	3,38	3,35	3,81	3,45	3,41
3,78	3,61	3,18	3,16	3,8	3,51	3,5	3,86	3,34	3,31
3,81	3,81	3,36	3,37	3,79	3,48	3,41	3,69	3,41	3,4
	Fre	zelenm	iş Alün	ninyum	M8 Civ	ata Tor	k = 25 1	Nm	
R _{ZC}	F	R _{Zfü} (µm	ı)	ŀ	R _{Zfa} (µm	ı)	I	R _{ZS} (µm	.)
(µm)									
		1.	2.		1.	2.		1.	2.
Önce	Önce	Deney	Deney	Önce	Deney	Deney	Önce	Deney	Deney
3,65	3,85	3,28	3,25	3,98	3,47	3,47	3,95	3,31	3,28
3,52	3,82	3,21	3,2	3,96	3,28	3,28	3,84	3,47	3,45
3,66	3,64	3,05	3,02	3,81	3,31	3,3	3,74	3,32	3,34
3,81	3,61	3,16	3,15	3,74	3,41	3,4	3,69	3,28	3,3
	Fre	ezelenm	iş Alün	ninyum	M8 Civ	ata Tor	k = 35]	Nm	L
R _{ZC}	F	R _{Zfü} (µm	ı)	F	R _{Zfa} (µm	ı)	I	R _{ZS} (µm	.)
(µm)									
		1.	2.		1.	2.		1.	2.
Önce	Önce	Deney	Deney	Önce	Deney	Deney	Önce	Deney	Deney
3,95	3,58	3,02	3	3,89	3,22	3,2	3,59	3,02	3
3,56	3,76	3,16	3,03	3,64	3,14	3,1	3,42	3,03	3,03
3,41	3,46	3,01	3	3,76	3,18	3,18	3,41	3,01	3,04
3,55	3,59	3,05	3,05	3,74	3,14	3,14	3,78	3,23	3,21

	Frezelenmiş Alüminyum M10 Civata Tork = 15 Nm									
R _{ZC}	F	R _{Zfü} (μn	n)	$R_{Zfa}(\mu m)$			R _{ZS} (µm)			
(µm)		1	2		1	2		1	2	
Önce	Önce	Deney	Deney	Önce	Deney	Deney	Önce	Deney	Deney	
3,82	3,91	3,42	3,4	3,85	3,62	3,6	3,74	3,41	3,4	
3,86	3,96	3,63	3,58	3,67	3,28	3,31	3,81	3,56	3,52	
3,74	3,7	3,45	3,44	3,63	3,31	3,32	3,62	3,39	3,35	
3,82	3,61	3,42	3,41	3,76	3,38	3,34	3,44	3,21	3,18	
	Fre	zelenmi	ş Alüm	inyum 1	M10 Ci	vata To	rk = 25	Nm		
R _{ZC}	F	R _{Zfü} (µn	ı)	ŀ	R _{Zfa} (µm	ı)	I	R _{ZS} (µm)	
(µm)										
		1.	2.		1.	2.		1.	2.	
Önce	Önce	Deney	Deney	Önce	Deney	Deney	Önce	Deney	Deney	
3,82	3,68	3,24	3,21	3,95	3,42	3,4	3,82	3,45	3,45	
3,85	3,74	3,35	3,32	3,52	3,15	3,12	3,31	3,28	3,28	
3,86	3,7	3,34	3,34	3,53	3,18	3,15	3,55	3,23	3,2	
3,84	3,92	3,68	3,62	3,84	3,52	3,51	3,64	3,31	3,31	
	Fre	zelenmi	ş Alüm	inyum 1	M10 Ci	vata To	rk = 35	Nm		
R _{ZC}	F	R _{Zfü} (µn	ı)	ŀ	R _{Zfa} (µm	ı)	I	R _{ZS} (µm)	
(µm)		-			-	-		-	-	
		1.	2.		1.	2.		1.	2.	
Önce	Önce	Deney	Deney	Önce	Deney	Deney	Önce	Deney	Deney	
3,75	3,75	3,37	3,35	3,47	3,02	3	3,82	3,42	3,4	
3,81	3,76	3,38	3,34	3,74	3,21	3,18	3,95	3,62	3,61	
3,83	3,53	3,05	3,02	3,65	3,28	3,24	3,71	3,32	3,32	
3,85	3,67	3,31	3,28	3,41	3,06	3,02	3,75	3,47	3,4	

Çizelge 4.106 Alüminyum flanş ve M10 civata kullanılarak ölçülen yüzey pürüzlülüğü kayıpları

	Fre	zelenmi	ş Alüm	inyum 1	M12 Ci	vata To	rk = 15	Nm		
R _{ZC}	F	R _{Zfü} (µm	n)	$R_{Zfa}(\mu m)$			R _{ZS} (µm)			
(µm)		1			1			1		
Öraa	Öres	I. Demos	2. Dere ere	Örrer	I. Demos	2. Deres	Örer	I. Damara	2. Deres	
Once	Once	Deney	Deney	Once	Deney	Deney	Once	Deney	Deney	
3,45	3,91	3,71	3,7	3,6	3,41	3,4	3,32	3,15	3,12	
3,65	3,96	3,65	3,62	3,71	3,51	3,5	3,41	3,22	3,21	
3,42	3,7	3,52	3,5	3,55	3,32	3,31	3,84	3,61	3,55	
3,48	3,61	3,45	3,4	3,54	3,34	3,32	3,45	3,23	3,2	
	Fre	zelenmi	ş Alüm	inyum 1	M12 Ci	vata To	rk = 25	Nm		
R _{ZC}	F	R _{Zfü} (µm	ı)	ŀ	R _{Zfa} (µm	ı)	Ι	R _{ZS} (µm)	
(µm)										
		1.	2.		1.	2.		1.	2.	
Önce	Önce	Deney	Deney	Önce	Deney	Deney	Önce	Deney	Deney	
3,74	3,44	3,12	3,1	3,73	3,52	3,5	3,42	3,18	3,12	
3,72	3,65	3,32	3,28	3,82	3,64	3,6	3,53	3,23	3,21	
3,63	3,38	3,09	3,05	3,45	3,18	3,15	3,45	3,15	3,15	
3,42	3,42	3,21	3,2	3,36	3,12	3,11	3,81	3,61	3,62	
	Fre	zelenm	iş Alüm	inyum	M12 Ci	vata To	rk= 35	Nm		
R _{ZC}	F	R _{Zfü} (µm	ı)	ŀ	R _{Zfa} (µm	ı)	I	R _{ZS} (µm)	
(µm)										
		1.	2.		1.	2.		1.	2.	
Önce	Önce	Deney	Deney	Önce	Deney	Deney	Önce	Deney	Deney	
3,81	3,77	3,42	3,42	3,72	3,41	3,38	3,96	3,71	3,7	
3,85	3,75	3,35	3,41	3,85	3,52	3,5	3,56	3,25	3,25	
3,74	3,65	3,4	3,4	3,68	3,45	3,45	3,78	3,42	3,42	
3,42	3,82	3,56	3,5	3,46	3,15	3,12	3,88	3,62	3,6	

Çizelge 4.107 Alüminyum flanş ve M12 civata kullanılarak ölçülen yüzey pürüzlülüğü kayıpları

M8		1. Deney			2. Deney	
Tork	R _{Zfü}	$\Delta R_{Zf\ddot{u}}$	%	R _{Zfü}	$\Delta R_{Zf\ddot{u}}$	%
(Nm)	(µm)	(µm)		(µm)	(µm)	
15	3,77	0,53	14	3,22	0,01	0,3
25	3,73	0,56	15	3,18	0,02	0,6
35	3,6	0,54	15	3,06	0,04	1,3
Tork	R _{Zfa}	ΔR_{Zfa}	%	R _{Zfa}	ΔR_{Zfa}	%
(Nm)	(µm)	(µm)		(µm)	(µm)	
15	3,88	0,46	12	3,42	0,03	0,9
25	3,87	0,51	13	3,37	0,01	0,1
35	3,76	0,59	15	3,17	0,02	0,4
Tork	R _{ZS}	ΔR_{ZS}	%	R _{ZS}	ΔR_{ZS}	%
(Nm)	(µm)	(µm)		(µm)	(µm)	
15	3,83	0,4	10	3,43	0,02	0,4
25	3,81	0,46	12	3,35	0,01	0,7
35	3,55	0,48	15	3,07	0,01	0,8

Çizelge 4.108 Alüminyum flanş ve M8 civata için sıkma momentine bağlı yüzey pürüzlülüğü kaybı ortalamaları

Çizelge 4.109 Alüminyum flanş ve M10 civata için sıkma momentine bağlı yüzey pürüzlülüğü kaybı ortalamaları

M10		1. Deney		2. Deney			
Tork	R _{Zfü}	$\Delta R_{Zf\ddot{u}}$	%	R _{Zfü}	$\Delta R_{Zf\ddot{u}}$	%	
(Nm)	(µm)	(µm)		(µm)	(µm)		
15	3,8	0,32	8,3	3,48	0,02	0,6	
25	3,76	0,36	9,5	3,4	0,03	0,8	
35	3,68	0,4	10	3,28	0,03	0,9	
Tork	R _{Zfa}	ΔR_{Zfa}	%	R _{Zfa}	ΔR_{Zfa}	%	
(Nm)	(µm)	(µm)		(µm)	(µm)		
15	3,73	0,33	8,8	3,4	0,01	0,1	
25	3,71	0,39	10	3,32	0,02	0,6	
35	3,57	0,43	12	3,14	0,03	1	

Tork	R _{ZS}	ΔR_{ZS}	%	R _{ZS}	ΔR_{ZS}	%
(Nm)	(µm)	(µm)		(µm)	(µm)	
15	3,65	0,26	7,1	3,39	0,03	0,8
25	3,58	0,26	7,3	3,32	0,01	0,2
35	3,81	0,35	9,2	3,46	0,02	0,7

Çizelge 4.110 M12 civata için sıkma momentine bağlı yüzey pürüzlülüğü kaybı ortalamaları

M12		1. Deney		2. Deney				
Tork	R _{Zfü}	$\Delta R_{Zf\ddot{u}}$	%	R _{Zfü}	$\Delta R_{Zf\ddot{u}}$	%		
(Nm)	(µm)	(µm)		(µm)	(µm)			
15	3,8	0,21	5,6	3,59	0,03	0,7		
25	3,47	0,28	8,3	3,19	0,02	0,8		
35	3,75	0,31	8,4	3,44	0	0		
Tork	R _{Zfa}	ΔR_{Zfa}	%	R _{Zfa}	ΔR_{Zfa}	%		
(Nm)	(µm)	(µm)		(µm)	(µm)			
15	3,6	0,21	5,6	3,39	0,01	0,3		
25	3,59	0,23	6,2	3,37	0,03	0,7		
35	3,68	0,3	8,2	3,38	0,02	0,6		
Tork	R _{ZS}	ΔR_{ZS}	%	R _{ZS}	ΔR_{ZS}	%		
(Nm)	(µm)	(µm)		(µm)	(µm)			
15	3,51	0,2	5,78	3,31	0,03	1		
25	3,55	0,26	7,3	3,29	0,02	0,5		
35	3,8	0,3	7,7	3,5	0,01	0,21		

Çizelge 4.111 Alüminyum flanş ve M8 Civata için sıkma momentine bağlı toplam yüzey pürüzlülüğü kaybı

M8		1. Deney		2. Deney			
Tork	R _Z	ΔR_Z	%	R _Z	ΔR_Z	%	
(Nm)	(µm)	(µm)		(µm)	(µm)		
15	15,31	1,79	11,7	13,52	0,08	0,6	
25	15,22	1,99	13	13,23	0,05	0,3	
35	14,46	2,09	14,4	12,37	0,08	0,6	

Çizelge 4.112 Alüminyum flanş ve M10 Civata için sıkma momentine bağlı toplam yüzey pürüzlülüğü kaybı

M10		1. Deney		2. Deney			
Tork	R _Z	ΔR_Z	%	R _Z	ΔR_Z	%	
(Nm)	(µm)	(µm)		(µm)	(µm)		
15	14,83	1,17	7,8	13,66	0,09	0,6	
25	14,63	1,27	8,6	13,36	0,06	0,4	
35	14,87	1,53	10,2	13,34	0,08	0,6	

Çizelge 4.113 Alüminyum flanş ve M12 Civata için sıkma momentine bağlı toplam yüzey pürüzlülüğü kaybı

M12		1. Deney		2. Deney			
Tork (Nm)	R _Z (µm)	ΔR_Z (µm)	%	R _Z (µm)	ΔR_Z (µm)	%	
15	14,42	0,82	5,6	13,6	0,1	0,7	
25	14,16	1,03	7,2	13,13	0,09	0,7	
35	15,03	1,21	8	13,82	0,04	0,3	

Çizelge 4.114 Frezelenmiş alüminyum yüzeyler için Literatürdeki formül ve tablolardan hesaplanan yüzey pürüzlülüğü kaybı değerleri

	STEINHILPER		RENDE 2000		DECKER		Deney Sonucu	
Civata	ΔR_Z	ΔR_Z %	ΔR_Z	ΔR_Z %	ΔR_Z	ΔR_Z %	ΔR_Z	ΔR_Z %
	(µm)		(µm)		(µm)		(µm)	
M8	2	10,8	1,85	10	4,5	20	2,09	14,4
M10	1,86	10	1,85	10	4	17	1,53	10,2
M12	1,73	9,3	1,85	10	3,5	15	1,21	8

Şekil 4.32 Frezelenmiş alüminyum flanşlar için Moment - ΔR_Z grafigi

Şekil 4.33 Frezelenmiş alüminyum flanşlar için Moment - %ARz grafigi

Grafiklerdeki ezilme miktarlarına bakılınca beklenildiği gibi Alüminyum malzemedeki pürüzlerin kendinden daha sert olan paslanmaz çelik ve imalat çeliğine göre olarak daha çok ezildiği görülmektedir. Malzeme sertleştikçe pürüz ezilme miktarları azalmaktadır. Benzer şekilde sıkma momenti arttıkça da pürüz ezilmesi artmaktadır. Ancak aynı moment değeri için civata ebadı küçüldükçe öngerilme kuvveti miktarı arttığı için küçük civatalarda büyük civatalara göre bir miktar fazla pürüz ezilmesi gözlenmiştir.

Şekil 4.34 M8 civata için flanş malzemelerine göre Moment - ΔR_Z grafigi

Şekil 4.35 M10 civata için flanş malzemelerine göre Moment - ΔR_Z grafigi

Şekil 4.36 M12 civata için flanş malzemelerine göre Moment - ΔR_Z grafigi

Burada dikkat edilmesi gereken nokta Şekil 4.35 ve 4.36'da aynı moment uygulanınca sanki imalat çeliği flanşlardaki pürüzlerin kendisinden daha yumuşak olan Alüminyum flanşla aynı miktarda eziliyor gibi görünmesidir. Ancak başlangıçtaki yüzey pürüzlülüğü değerlerini hatırlarsak aynı talaş kaldırma işlemi uygulanmış olmasına rağmen İmalat çeliği flanşların Alüminyuma göre yaklaşık %20 daha pürüzlü olduğudur. Bu durumda daha fazla pürüzün ezilmesi doğaldır. Ancak Şekil 4.37, 4.38 ve 4.39'daki ezilme yüzdelerine bakılınca beklenildiği gibi Alüminyum malzemedeki pürüzlerin yüzde olarak daha çok ezildiği görülmektedir.

Şekil 4.37 M8 civata için flanş malzemelerine göre Moment - ΔR_Z grafigi

Şekil 4.38 M10 civata için flanş malzemelerine göre Moment - $\%\Delta R_Z$ grafigi

Şekil 4.39 M12 civata için flanş malzemelerine göre Moment - ΔR_Z grafigi

Flanş malzemelerinin sertliklerini hatırlarsak paslanmaz çelik ile imalat çeliği malzemelerimizin birbirine oldukça yakın değerler olduğunu tespit etmiştik. Bu durumun etkisi pürüz ezilme yüzdeleri grafiklerinde kendini göstermektedir. Yüzey kaliteleri birbirinden farklı olmasına rağmen sertlikleri birbirine yakın olan her iki tip malzememizde de yaklaşık aynı yüzde değerlerde pürüz ezilmesi ölçülmüştür.

Deneylerde elde edilen veriler ışığında öngerilmeli civata bağlantısında statik durumda meydana gelecek pürüz ezilme miktarının yaklaşık hesabı için aşağıdaki formül kullanılabilir.

$$\Delta R_Z = k. \sum R_Z$$

 $\sum R_Z$: Temas yüzeylerinin toplam pürüzlülüğü k değeri maksimum değer olarak aşağıdaki şekilde belirlenmiştir. İmalat çeliği için k=11,5 Paslanmaz çelik için k=11 Alüminyum için k=14 alınabilir. Sıkılmış olan bir civata bağlantısında pürüz ezilmesi sonucu bir miktar öngerilme kuvveti kaybının oluşacağı literatürde değinilen bir başka husustur. Sıkıştırılma esnasında boyu uzayan civata, yüzey pürüzlerinin ezilmesi sonucu kısalarak sıkıştırılmadan önceki boyuna dönmeye çalışmaktadır. Yapılan ölçümler sonucunda elde ettiğimiz ortalama yüzey pürüzlülüğü kaybı değerlerinden yola çıkarak pürüzlerde meydana gelen bu ezilmenin öngerilmeli civata bağlantısında ne kadarlık bir öngerilme kuvveti kaybı oluşturacağına ait hesaplanan değerler Çizelge 4.114'de verilmiştir.

Yüzey pürüzlerinin ezilmesine bağlı olarak meydana gelen öngerilme kuvveti kaybının en fazla imalat çeliği flanşlarda olduğu hesaplanmıştır. Uygulanan torka bağlı olarak %5 ile %10 arasında kayıp hesaplanmıştır. Paslanmaz çelik flanşlarda %2,5 ile %3 , Alüminyumda ise bu değerler %2 ile % 3 arasındadır. İmalat çeliğinin yüzeyinin diğer malzemelerinkine göre kaba olması sebebiyle hem daha fazla pürüz ezilmesi oluşmuş hem de sürtünme kuvvetinin büyük olması sebebiyle aynı tork değeri için diğer malzemelerdekine göre daha az öngerilme kuvveti elde edilmiştir. Bu durumda küçük öngerilme kuvveti büyük pürüz ezilmesi kombinasyonu %10 gibi yüksek kayıp yüzdesine sebep olmuştur. Çizelge 4.115.

İmalat Çeliği	Tork (Nm)	ΔR _z (μm)	$\Delta F_Z(N)$	$F_{\ddot{O}N}(N)$	% Fz
	15	1,58	833	18.897	4,2
M8	25	1,83	965	31.496	3
	35	1,95	1028	44.094	2,3
	15	1,06	873	15.904	5,2
M10	25	1,32	1088	21.576	4,8
	35	1,31	1079	40.281	2,6
	15	0,76	902	13.531	6,2
M12	25	0,83	985	22.551	4,2
	35	0,98	1163	31.571	3,6
Paslanmaz Çelik	Tork (Nm)	$\Delta RZ(\mu m)$	$\Delta F_Z(N)$	$F_{\ddot{O}N}(N)$	% Fz
M8	15	0,73	385	22.677	1,7
1410	25	0,82	432	37.795	1,1

Çizelge 4.115 Flanş malzemesine bağlı olarak pürüz ezilmesinden kaynaklanan öngerilme kuvveti kaybı

	Çizelge 4.115 Devamı				
	35	1,01	532	52.913	1
M10	15	0,42	346	19.085	1,8
	25	0,66	544	29.928	1,8
	35	0,67	552	41.151	1,3
M12	15	0,29	344	16.237	2,1
	25	0,38	451	27.061	1,6
	35	0,64	759	37.886	2
Alüminyum	Tork (Nm)	$\Delta RZ(\mu m)$	$\Delta F_Z(N)$	$F_{ON}(N)$	% Fz
M8	15	1,79	944	26.456	3,4
	25	1,99	1049	44.094	2,3
	35	2,09	1102	61.732	1,8
M10	15	1,17	964	22.265	4,1
	25	1,27	1046	37.109	2,7
	35	1,53	1261	51.952	2,4
M12	15	0,82	973	18.943	4,9
	25	1,03	1222	35.183	3,4
	35	1,21	1436	54.697	2,6

5. SONUÇ

Yapılan deneyler sonucunda, sürtünme kayıpları, yüzey sürtünme katsayıları ve öngerilme kuvveti kaybı açısından literatürde bulunan tablolardaki, forrmüllerin kullanımıyla yapılan hesaplamalardaki sonuçlarla, deneylerde elde edilen veriler arasında kayda değer farklılıklar göze çarpmaktadır.

Taşlanmış C1050 imalat çeliğinden yapılmış flanşların sıkılması durumunda literatürdeki formüllerle yapılan hesaplamalar sonucunda, uygulanan momentin %88'inin sürtünme kuvvetlerini yenmeye harcandığı hesaplanmıştır. Ancak yapılan deneylerdeki ölçümler sonucunda uygulanan momentin %60'ının sürtünme kuvvetlerini yenmeye harcandığı tespit edilmiştir.

Polisajlanmış 5075 alüminyum flanşların sıkılması durumunda literatürdeki formüllerle yapılan hesaplamalar sonucunda, uygulanan momentin %86'ının sürtünme kuvvetlerini yenmeye harcandığı hesaplanmıştır. Ancak yapılan ölçümler sonucunda uygulanan momentin %60-%65'inin sürtünme kuvvetlerini yenmeye harcandığı tespit edilmiştir. M12 civataya 100 Nm tork uygulanması esnasında alüminyum malzeme için emniyet yüzey basıncı değeri aşıldığı için flanş yüzeyi ezilmiştir. Bu sebeple bu moment değeri için ölçüm alınamamıştır.

Hassas tornalanmış 304 paslanmaz çelik flanşların sıkılması durumunda literatürdeki formüllerle yapılan hesaplamalar sonucunda, uygulanan momentin %90'ının kuvvetlerini yenmeye harcandığı hesaplanmıştır. Ancak yapılan ölçümler sonucunda uygulanan momentin %65-%70'inin sürtünme kuvvetlerini yenmeye harcandığı tespit edilmiştir.

Benzer sonuçlar frezelenmiş flanşlarla yapılan deneylerde de gözlemlenmiştir. Ancak burada teorik hesaplarla ölçümler arasında daha az farklılık göze çarpmaktadır. Diğer bir husus ise sürtünme katsayısının artışına paralel olarak (flanş yüzeyi kabalaştıkça) ölçüm değerlerinde de geniş bir alana saçılma oluşmasıdır.

148

Frezelenmiş C1050 imalat çeliğinden yapılmış flanşların sıkılması durumunda literatürdeki formüllerle yapılan hesaplamalar sonucunda, uygulanan momentin %90'ının sürtünme kuvvetlerini yenmeye harcanması gerektiği hesaplanmıştır. Ancak yapılan ölçümler sonucunda %70-%80'inin sürtünme kuvvetlerini yenmeye harcandığı tespit edilmiştir.

Frezelenmiş 304 paslanmaz çelikten yapılmış flanşların sıkılması durumunda literatürdeki formüllerle yapılan hesaplamalar sonucunda uygulanan momentin %90'ının sürtünmeye harcanması gerektiği hesaplanmıştır. Ancak yapılan ölçümler sonucunda %68-%73'ünün sürtünme kuvvetlerini yenmeye harcandığı tespit edilmiştir. Burada frezelenmiş ve hassas tornalanmış paslanmaz çelik yüzeyler için yaklaşık aynı değerler ölçülmüştür.

Frezelenmiş 5075 alüminyumdan yapılmış flanşların sıkılması durumunda literatürdeki formüllerle yapılan hesaplamalar sonucunda uygulanan momentin %89'unun sürtünme kuvvetlerini yenmeye harcanması gerektiği hesaplanmıştır. Ancak yapılan ölçümler sonucunda %63-%72'sinin sürtünme kuvvetlerini yenmeye harcandığı tespit edilmiştir.

Deneyler esnasında yağlamanın da etkisi incelenmiştir. Yağlaycı olarak kırmızı gres yağı kullanılmıştır. Frezelenmiş flanş yüzeyleri yağlanarak ölçümler alınmıştır. Deneyler sonucunda imalat çeliği ve paslanmaz çelik yüzeylerde sürtünme kayıpları %70-%80'lerden %55-%60'lara, alüminyum yüzeylerde ise sürtünme kayıpları %65-%70'lerden %45-%55'lere kadar düşmüştür.

Literatürde civata sıkılırken uygulanan momentin yaklaşık %90'ının sürtünmeyi yenmeye harcandığına dair genel bir kanı olduğunu biliyoruz. Bu görüşten yola çıkılarak pek çok tork tablosu hazırlanmış ve önerilmiştir. Ancak yaptığımız deneyler sonucunda, civatalar torklanırken literatürde bulunan tablolardaki tavsiye edilen moment değerlerinin kullanılması durumunda elde edilecek öngerilme kuvvetinin eğer yüzeyler ince işlenmiş ise (taşlama , polisajlama, hassas tornalama...) civatanın akma sınırını dahi aşabilecek değerlere çıkabileceğidir. Bu durumda civata bağlantısına

149

gelecek herhangi bir işletme kuvveti sonucunda ya civata kalıcı şekil değişikliğine uğrayacak, kuvvet kalktıktan sonra aynı şeklini koruyacak böylece bağlantı gevşeyerek çözülecek, ya da eğer gelen kuvvet çok daha büyük ise civata bağlantısı koparak hasar görecektir. Bu sebeple hassas işlenmiş yüzeylerde öngerilmeli civata bağlantısı yapılmak istenildiği durumlarda mutlaka bu durum göz önünde bulundurularak moment değerleri daha küçük seçilmelidir. Bundan sonra yapılacak çalışmalarda yağlayıcı olarak molibden yağlayıcıların kullanılması ve civata oturma yüzeylerine pul konularak bu durumdaki öngerilme kuvvetlerinin gözlemlenmesi bu tez kapsamında değinilemeyen kısımların da aydınlanması açısından faydalı olacaktır. Ayrıca civata malzemesi olarak siyahlaştırılmış civatalar dışında kalan örneğin paslanmaz çelik yada daha yüksek kalite çelik civataların kullanılması da uygun olacaktır.

Yapılan deneyler kapsamında literatürde pek değinilmeyen ya da hesaplamalarda genellikle göz ardı edilen flanş temas yüzeylerindeki pürüzlerin ezilmesiyle meydana gelen plastik deformasyonların oluşturduğu öngerilme kuvveti kaybı miktarı da ölçülmeye çalışılmıştır.

İncelenen kaynaklarda pürüz ezilmesinin tecrübi olarak yaklaşık %5 ile %10 arasında bir öngerilme kuvveti kaybına sebep olabileceği belirtilmektedir. Formül ve tablolardan ise yaklaşık 2 µm pürüz ezilmesi olabileceği hesaplanmaktadır. Deneyler sonucunda frezelenmiş 304 paslanmaz çelik flanşlarda ($R_Z \approx 2.5 \ \mu m$) maksimum 1 μm yaklaşık % 10,8 yüzey pürüzlülüğü kaybı gözlemlenmiştir. Pürüz ezilmesi en çok % 2 öngerilme kuvveti kaybı oluşturmuştur. Frezelenmiş C1050 İmalat çeliği flanşlarda (Rz \approx 4,5 µm) en çok 1,95 µm yaklaşık % 11,5 yüzey pürüzlülüğü kaybı gözlemlenmiştir. Pürüz ezilmesi en çok % 6,2 öngerilme kuvveti kaybı oluşturmuştur. Frezelenmiş 5075 Alüminyum flanşlarda ($R_Z \approx 3.5 \mu m$) en çok 2 μm yaklaşık % 14,4 yüzey pürüzlülüğü kaybı gözlemlenmiştir. Pürüz ezilmesi en çok % 4,9 öngerilme kuvveti kaybı oluşturmuştur. Alüminyum ve imalat çeliğinde ölçülen değerler literatürdeki değerlerle yaklaşık olarak aynı değerlerdedir. Paslanmaz çelik için ölçülen değerler µm olarak %50 kadar az ölçülmekle beraber yüzey pürüzlülüğünün imalat çeliğine göre % 45 az olmasının bu sapmayı oluşturduğunu tahmin ediyoruz. Öngerilmeli bir civata bağlantısının hesabını yaparken ortalama olarak %5 kadar pürüz ezilmesinden dolayı

150

oluşabilecek öngerilme kaybı değeri göz önünde bulundurulursa daha doğru olacağını söyleyebiliriz

Yüzde olarak öngerilme kuvveti kaybının daha detaylı incelenebilmesi için flanş yüzeylerinin, flanş malzemesi ne olursa olsun aynı kalitede işlenerek birbirine yakın yüzey pürüzlülüğü için deneylerin yapılması daha uygun olacaktır. Aksi taktirde sürtünme kuvveti değişken olup aynı tork için farklı flanş malzemelerinde çok farklı öngerilme kuvveti değerleri elde edilmektedir. Bu durumda kıyas yapmak yanıltıcı olabilmektedir.

Flanşların ikinci kez sıkılması durumunda kayda değer bir pürüz ezilmesi görülmemiştir. Bu durum uygulamada çok yaygın olan 'civatayı sıkıp-çözmek, sonra tekrar sıkmak' uygulamasının plastik deformasyona bağlı öngerilme kuvveti kaybını engellemek için faydalı olduğunun göstermektedir.

Esasında pürüz ezilmesine bağlı oluşan plastik deformasyon olayı montaj esnasından ziyade işletme kuvvetleri etkisi altında özellikle titreşimli yükleme durumlarında artmaktadır. Bu sebeple ileride yapılacak benzer çalışmalarda bir titreşim düzeneği kurularak belli zaman periyotlarında pürüzlerin ezilmesinin gözlemlenmesi daha doğru sonuçlar verecek ve daha faydalı olacaktır.

Yapılan deneyler kapsamında yüzey pürüzlülüğü ölçüm cihazının ölçüm ucunun vida dişlerinin arasına giremeyecek kadar büyük olması sebebiyle civata ve somun dişlerinde meydana gelen pürüz ezilmesi miktarı ölçülememiştir. Benzer şekilde flanş yüzeyleri ölçümü yapılırken montaj öncesi ve montaj sonrası aynı noktadan ölçüm almak gerekmiş ve cihaz elle konumlandırıldığı için bu konuda güçlük çekilmiştir. Bu konuda daha hassas otomatik konumlamalı, yüzeylerden hem ölçüm hem görüntüleme yapabilecek cihazların kullanılarak deneylerin yapılması uygun olacaktır.

6. KAYNAKLAR

ANONIM-I.2001. Operating Instructions Perthometer M2 and M3 with PJM Drive Unit,

- ANONİM-II. 2002. Bağlantı Elemanları Civatalar İçin Boşluklu Delikler, Türk Standartları Enstitüsü – TS 528 EN 20273/Nisan 2002, Ankara
- ANONİM-III.2001.Operation Manual MINI-MAX Bolt Tension Monitor, Dakota Ultrasonics, August 2008, USA
- ANONİM-IV GEMALMAYAN N. 2009. http://websitem.gazi.edu.tr/nihatgem
- ANONİM-V SOUTHERN ILLİNOİS UNIVERSİTY, 2005. Surfaces and Contact Mechanics, http://frictioncenter.engr.siu.edu/course/file10.html
- BABALIK, F. C. 1997. Makine Elemanları ve Konstrüksiyon Örnekleri. Uludağ Üniversitesi Güçlendirme Vakfı, Cilt 1, ss:362, Bursa
- BICKFORD J. H. 1995. An Introduction to the Design and Behavior of Bolted Joints. CRC Press, USA
- DECKER K. H. Machinelemente Gestaltung un Berenchnung 10. Auflage Tabellen anhang. Carl Hanser Verlag München Wien DEUTSCHLAND
- FISHER J. W. and STRUIK J. H. A. Guide to Design Criteria for Bolted and Riveted Joints. American Institude of Steel Construction, 1987, Chicago
- HART V. G. and Jones J. F. 1971. Torque-Tension Relationship and Static Preload Loss of High Strenght, Heat Resistant, and Corrosion Resistant Aircraft Alloy Fastaners. LR 25049 (yayınlanmamış). California. USA.
- MAHR GMBH-Germany, Mahr Federal Inc.-USA, pp. 93
- MUNSE W. H. High-Strenght Bolting. AISC Engineering Journal, Illionis 1966
- NASA. 1998. Criteria for Preloaded Bolts. NSTS 08307 Revision A (Yayınlanmamış). Houston, Texas.
- NASSAR S. A. and MATIN P. H. Clamp Load Lose Due to Fastener Elongation Beyond its Elastic Limit. Journal of Pressure Vessel Technology. Vol. 128. 2006

RENDE, H. 2000. Makine Elemanları. Seç Yayın Dağıtım, Cilt 1, Antalya

- SLEINHIPER W. und ROPER R. Maschinen und Konstruktions Elemente, Springer Verlag, Band II, 1986, Berlin, Heidelberg, Newyork, Tokyo.
- SONG S. and YAMAGUCHI T. and KITADA T. Analytical Study on Mechanical Behaviour of High Strenght Bolted Tensile Joints with High Strenght and High

Ductility Bolts. Mem. Fac. Eng. , Osaka City Univ. , Vol. 46, pp. 45-50, 2005 , Japan

ÖZGEÇMİŞ

Burak MEŞHUR 1981 yılında Antalya'da doğdu. İlk, orta ve lise öğrenimini Antalya'da tamamladı. 1999 yılında girdiği Uludağ Üniversitesi Makine Mühendisliği Bölümünden 2003 yılında mezun oldu. Bursa İlinde çeşitli otomotiv yan sanayi kuruluşlarında Arge mühendisliği yaptı. 2005 yılında Akdeniz Üniversitesi Fen Bilimleri Enstitüsü, Makine Mühendisliği Anabilim dalında yüksek lisans eğitimine başladı. Eğitimini sürdürürken serbest mühendis olarak çalışmaya devam etti. 2009 yılında Antalya Serbest Bölgesinde tasarım mühendisi olarak işe başladı. Halen tasarım mühendisliği görevini sürdürmektedir. Evli ve 1 çocuk babasıdır.