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ÖZET

HİSSE SENETLERİ İÇİN PEKİŞTİRMELİ ÖĞRENME

Uğur HAZIR

Yüksek Lisans Tezi, Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Dr. Öğr. Üyesi Taner DANIŞMAN

Haziran 2021; 78 sayfa

“Finans sektöründe hangi hisse senedinin ne zaman alınıp satılabileceğine ve ne za-

man hamle yapılması gerektiği hakkında karar vermeyi sağlayan pek çok model vardır”

(Hazır ve Danışman 2020) . Bu tezde Derin-Q-Ağı ajanının Borsa İstanbul için per-

formansı test edilmiş olup Borsa İstanbul’da yer alan BIST30 endeks hisselerine odak-

lanılmıştır. Ham veriler Mynet web sitesinden Google Chrome gezgini üzerinde Java-

Script fonksiyonlarından yararlanılarak elde edilmiş olup operasyonlardan önce işlen-

miştir.

İlk önce; her bir hisse için Stokastik osilatör ve MACD değerleri hesaplanır. Bu

hesaplamalar esnasında başlangıç verisi hesaplamalar için harcanır ve bu nedenle az mik-

tarda veri hesaplamalar uğruna kaybedilir.

İkinci olarak; elde edilen veri, eğitim verisi ve test verisi olarak iki parçaya bölünür.

Eğitim periyodu 08.03.2000 tarihinden başlar ki bu işlenmiş verinin başkangıç tarihidir ve

31.12.2014 tarihinde sona erer. Test periyodu ise 01.01.2015 tarihinde başlar ve 21.12.2019

tarihinde sona erer. Verilen herhangi bir günde her bir hisse işlem görmez. Bir hisse ver-

ilen günde tüm işlemlere kapatılmış olabilir. Bu nedenle eğitim ve test periyod süreleri

her bir hissede eşit değildir.

Pekiştirmeli Öğrenme ajanı yaratmak için Derin-Q-Ağı metodu seçilmiştir. Her bir

hisse için Q değerlerini hesaplamak üzere Derin-Q-Ağı üretilmiştir.

Program, Tensorflow kütüphanesini arka uç olarak kullanan Keras kütüphanesi kul-

lanılarak Python programlama dili ile üretilmiştir.
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Her bir Derin-Q-Ağına, günlük parametreler, Stokastik ve MACD parametreleri girdi

olarak verilmiş olup; bu parametreler şunlardır: Kapanış, Düşük, Yüksek, Hacim, Yıl,

EMA12, EMA26, MACD, MACDsinyal9, StokastikMax14, StokastikMin14, Stokastik-

K14, StokastikD14, StokastikMax5, StokastikMin5, StokastikK5 ve StokastikD5. 17 adet

girdi parametresi Derin-Q-Ağına verilir; ki bu parametreler veri giriş katmanını oluşturur.

İlk gizli katmanda 540 nöron bulunur. İkinci gizli katmanda 180, üçüncü gizli katmanda

64, dördüncü gizli katmanda 32, beşinci gizli katmanda 8 nöron bulunur. Bütün gizli kat-

manlarda ReLU aktivasyon fonksiyonu kullanılır. Bir Derin-Q-Ağı için eylem alanı bekle,

al ve sat eylemlerinden oluşur. Bu nedenle çıktı katmanında 3 nöron bulunur. Çıktı kat-

manında lineer aktivasyon fonksiyonu kullanılır. Lineer aktivasyon fonksiyonu nörondaki

değerin hiç bir matematiksel operasyona maruz bırakılmadan doğrudan kullanılmasını

sağlar. Tekrar Hafızası geçmiş tecrübeleri kullanarak bir sonraki eylemi tahmin etmek

için kullanılır.

Eğitim periyodu için eğitim verisi girdi olarak verilir ve program her bir Derin-Q-Ağı

için 5000 bölüm kadar çalıştırılır. Ajan 1000 TL anapara ile başlar ve daha zorlu bir ortam

yaratmak adına her bir alım satım eyleminde 1 TL işlem ücreti öder. Ajan yeterince parası

varsa ve al sinyali geldi ise satın alma işlemini gerçekleştirir. Ajan elinde hisse varsa

ve sat sinyali geldiyse ya da yüzde beş kârlı durumda ise satma işlemini gerçekleştirir.

Diğer durumlarda, bekle sinyali geldiyse hisseyi elinde tutar ya da elinde yoksa satın

almayı bekler. Q değerlerini tahmin etmek için epsilon açgözlü stratejisini kullanırız.

Başlangıçta Derin-Q-Ağı, keşif için daha rastgele hareket edecektir. Sonunda daha az

rastgele eylemler yapacaktır çünkü öğrendiği deneyimden faydalanacaktır. 5000 bölüm

sonunda keras model kaydetme fonksiyonu ile mevcut durum ve değerleri kaydederiz.

Son olarak, test verisi algoritmanın başarısını sınamak için programa girdi olarak ver-

ilir. Bu safhada bütün Derin-Q-Ağları eş zamanlı olarak çalıştırılır ve aynı zamanda benim

ajanı daha fazla hamle yapmaya zorlamak için icat ettiğim Birleştirilmiş Derin-Q-Ağı

metodu hesaplanır. Birleştirilmiş Derin-Q-Ağı metodu, gerçek bir Derin-Q-Ağı metodu

değildir. Bu metodda verilen koşullarda en iyi performans sergileyen Derin-Q-Ağına ait

hamleler takip edilir. Eğer Birleştirilmiş Derin-Q-Ağı ajanı elinde hisse yok ise kendisini

al sinyali veren (eylem olarak al eylemi seçilmiş ise) Derin-Q-Ağına bağlar. Birleştirilmiş

Derin-Q-Ağı ajanı eğer bağlandığı Derin-Q-Ağı ajanı sat sinyali verirse (eylem olarak
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sat eylemi seçilmiş ise) veya elindeki hisse belirlenen oranda kâr ya da zararda ise bağ-

landğı Derin-Q-Ağı ajanını salar. Birleştirilmiş Derin-Q-Ağı ajanı bir sonraki al sinyalini

bekler ve verilen gün için kendisini en iyi performans gösteren Derin-Q-Ağına bağlar.

Birleştirilmiş Derin-Q-Ağı ajanı bu şekilde bağlanma ve salma işlemleri yaparak süreci

tekrar eder. Test aşamasında epsilon açgözlü stratejisi uygulanmaz; çünkü ajan öğrenme

sürecini tamamlamıştır ve Q değerleri artık hesaplanmıştır. Hesaplanan bu Q değerlerinin

üzerine yazmak istenmeyen bir durumdur.

Sonuç olarak, açıkça görülmektedir ki; ajan öğrendikçe iflas sayısı azalmakta ve son

bakiye artmaktadır. Birleştirilmiş Derin-Q-Ağı metodu en iyi metod değildir; fakat eylem

sayısını ve aynı zamanda riski de arttırmaktadır.

ANAHTAR KELİMELER: Birleştirilmiş Derin-Q-Ağı Metodu, BIST30, Borsa İstan-

bul, Derin-Q-Ağı, MACD, Pekiştirmeli Öğrenme, ReLU, Stokastik osilatör.

JÜRİ: Dr. Öğr. Üyesi Taner DANIŞMAN

Doç. Dr. Gıyasettin ÖZCAN

Dr. Öğr. Üyesi Hüseyin Gökhan AKÇAY
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ABSTRACT

REINFORCEMENT LEARNING FOR STOCK MARKETS

Uğur HAZIR

MSc Thesis in Computer Engineering

Supervisor: Asst. Prof. Dr. Taner DANIŞMAN

June 2021; 78 pages

“There are many models at Finance sector to decide which stock to buy or sell and

when to act” (Hazır and Danışman 2020, 1) . In this thesis performance of the Deep-Q

Network agent for Borsa Istanbul (Istanbul Stock Exchange) is tested. We focused on

BIST30 index stocks Borsa Istanbul (Istanbul Stock Exchange) Top 30 index stocks. Pure

data is gathered from Mynet website by the help of JavaScript functions using a Google

Chrome browser and data is processed before operations.

First of all, Stochastic oscillator and MACD values are calculated for each stock.

Some small amount of initial data is lost and spend during those calculations.

At second, data is splitted into training data and test data for a stock. Training period

starts at 08.03.2000 which is the beginning of the processed data and ends at 31.12.2014.

Test period starts at 01.01.2015 and ends at 21.12.2019. Not all stock may be open to

process during given day. A stock might be banned for all processes for a given day. So

that the training and test day period size is not equal for every stocks.

Deep-Q Network methodology is chosen to create a Reinforcement Learning agent.

For each stock a DQN is generated and run to calculate the Q values.

Program is produced using Python programming language by using Keras library

which uses Tensorflow library as backend.

We give daily parameters, Stochastic and MACD values as input parameters to our

DQNs which are : Close, Low, High, Volume, Year, EMA12, EMA26, MACD, MACDsig-

nal9, StochasticMax14, StochasticMin14, StochasticK14, StochasticD14, StochasticMax5,

StochasticMin5, StochasticK5 and StochasticD5. We give 17 input parameters to DQN

which is our input layer. At first hidden layer there are 540 neurons. At second hidden

layer there are 180 neurons. At third hidden layer there are 64 neurons. At forth hidden
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layer there are 32 neurons. At fifth hidden layer there are 8 neurons. For all hidden layers

ReLU activation function is used. For a DQN action space is wait, buy and sell so that

we have 3 neurons at output layer. Output layer uses linear as activation function which

means the value of the neuron is used directly without any mathematical operation. The

Replay Memory is used to predict next action from previous experience.

For the training phase we give training data as input and run the program for 5000

episodes for each DQNs. The agent starts with 1000 TL initial money and every transac-

tion costs 1 TL to create a harsh environment. The agent buys if it has enough money and

has buy signal. It sells if it has 5 percent profit or sell signal when it has stocks. Otherwise;

it waits or holds if wait action is selected as next step. We apply epsilon greedy strategy

to forecast Q values. At the beginning DQN will act more randomly for exploration. At

the end it will make less random actions because it has learned so it exploits. After 5000

episodes we save the states and values of the DQN by saving keras model.

Finally, test data is given as input to calculate the success of the algorithm. We load

the last saved state of the DQNs and give the test data as input. At this phase we run

all DQNs simultaneously and at the same time The Combined DQN Method (Hazır and

Danışman 2020, 5) is calculated which is a process that I invented to force the agent to

make more actions. It is not a real DQN but it follows the acts of the best performing

DQN during the execution by using given conditions. If The Combined DQN agent has

no stock, it attaches itself to the best performing DQN which has a buy signal (which

produces buy action). The Combined DQN agent detaches itself if the attached DQN

gives sell signal (which produces sell action) or the stock is at the specified rate loss or

profit. The Combined DQN agent waits for the next buy action and attaches itself to

the best performing DQN for a given day and it repeats the processes of attaching and

detaching. Epsilon greedy strategy is not applied at testing phase because the agent is

learned and calculated Q values already. It is not desirable if we overwrite those values.

In conclusion, it can be clearly seen that as the agent learns the number of bankruptcy

drops and end balance is increase. The Combined DQN method is not the best method

but it increases the number of operations and also the risk.

KEYWORDS: BIST30, Borsa Istanbul, Deep-Q Network, MACD, Reinforcement Learn-

ing, ReLU, Stochastic oscillator,The Combined DQN Method.

v



COMMITTEE: Asst. Prof. Dr. Taner DANIŞMAN
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Taner DANIŞMAN for his support, encourage and advises.

Secondly, I would like to thank Prof. Dr. Melih GÜNAY for Artificial Intelligence

lecture and Asst. Prof. Dr. Hüseyin Gökhan AKÇAY for Machine Learning lecture that

they helped me a lot about learning the required basic concepts and knowledge for this

thesis which led me progress forward.

Finally, I would like to thank my wife and sons for their patience and support.

vii



LIST OF CONTENTS

ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TEXT OF OATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF SYMBOLS AND ABBREVIATIONS . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1. The Moving Average Convergence Divergence (MACD) . . . . . . . . . 5

2.2. Stochastic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3. Markov Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4. Markov Decision Process (MDP) . . . . . . . . . . . . . . . . . . . . . . 8

2.5. Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6. Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6.1. Epsilon Greedy Strategy . . . . . . . . . . . . . . . . . . . . . . 10

2.7. Artificial Neural Networks (ANN) . . . . . . . . . . . . . . . . . . . . . 11

2.7.1. Rectified Linear Unit (ReLU) . . . . . . . . . . . . . . . . . . . . 12

2.7.2. Adam Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8. Deep-Q Network (DQN) . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8.1. Replay Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. MATERIAL AND METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1. Assumptions for the Model . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2. Gathering Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3. Preprocessing Data to Calculate MACD and Stochastic Values . . . . . . 20

3.4. Programming Environment . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5. Creating DQN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6. Training Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.7. Test Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.8. The Combined DQN Method . . . . . . . . . . . . . . . . . . . . . . . . 33

4. RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1. Results for the Training Phase . . . . . . . . . . . . . . . . . . . . . . . 36

viii



4.1.1. Training Phase for ARCLK . . . . . . . . . . . . . . . . . . . . . 36

4.1.2. Training Phase for ASELS . . . . . . . . . . . . . . . . . . . . . 38

4.1.3. Training Phase for SAHOL . . . . . . . . . . . . . . . . . . . . . 40

4.1.4. Training Phase for TUPRS . . . . . . . . . . . . . . . . . . . . . 42

4.2. Results for the Test Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1. Buy and Hold Strategy Calculation for the Test Phase . . . . . . . 45

4.2.2. 14 Day Period Stochastic Oscillator Calculation for the Test Phase 45

4.2.3. Test 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.4. Test 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.5. Test 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.6. Test 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3. Discussions of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6. REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

CURRICULUM VITAE

ix





LIST OF SYMBOLS AND ABBREVIATIONS

Symbols:

C : Close value of a stock

H : High value of a stock

L : Low value of a stock

n : Number of days

t : Time period

%K : A Stochastic Oscillator Index

%D : A Stochastic Oscillator Index

K : Stochastic K Index

S : Set of possible states

A : Set of possible actions

T : A transaction model for MDP

R : Reward

A : Set of possible actions

γ : Discount rate

Q : Q value

s : State

a : Action

α : Learning rate

r : A random variable

ε : Probability of choosing to explore

i : Given day

X : Numpy array

f : Function

xi



Abbreviations:

AI : Artificial Intelligence

BH : Buy and Hold

BIST30 : Borsa Istanbul (Istanbul Stock Exchange) Top 30 index stocks

CSV : Comma Separated Value

DQN : Deep Q-Network

EMA : Exponential Moving Average

MA : Moving Average

MACD : The Moving Average Convergence Divergence

MDP : Markov Decision Processes

ML : Machine Learning

NASAA : North American Securities Administrators Association

ReLU : Rectified Linear Unit

RL : Reinforcement Learning

RSI : Relative Strength Index

SMA : Simple Moving Average

TL : Turkish Lira

xii



LIST OF FIGURES

Figure 2.1. A stochastic process model (Tribello, G. 2015) . . . . . . . . . . . . 7

Figure 2.2. Markov Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.3. Reinforcement Learning Agent and Environment Interaction . . . . . 8

Figure 2.4. An Artificial Neuron (Gershenson, C. 2003, 2) . . . . . . . . . . . . 11

Figure 2.5. A Feed-forward ANN using back propagation . . . . . . . . . . . . . 12

Figure 2.6. Adam performance comparison with other methods (Kingma, D. P.

and Ba, J. 2017, 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 3.7. Screenshot of ARCLK Historical data from Mynet website (Anony-

mous 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 3.8. Screenshot of JavaScript commands executed on Google Chrome De-

veloper Tools Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.9. Screenshot of JavaScript results on Google Chrome Developer Tools

Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.10. The Artificial Neural Network to approximate the Q-values . . . . . . 27

Figure 4.11. Epsilon decays according to the Epsilon Greedy Strategy . . . . . . . 36

Figure 4.12. SMA 100 End Balance for ARCLK . . . . . . . . . . . . . . . . . . 37

Figure 4.13. SMA 100 Number of Operations for ARCLK . . . . . . . . . . . . . 37

Figure 4.14. SMA 100 Bankruptcy and Loss Rate for ARCLK . . . . . . . . . . . 38

Figure 4.15. SMA 100 End Balance for ASELS . . . . . . . . . . . . . . . . . . . 38

Figure 4.16. SMA 100 Number of Operations for ASELS . . . . . . . . . . . . . 39

Figure 4.17. SMA 100 Bankruptcy and Loss Rate for ASELS . . . . . . . . . . . 39

Figure 4.18. SMA 100 End Balance for SAHOL . . . . . . . . . . . . . . . . . . 40

Figure 4.19. SMA 100 Number of Operations for SAHOL . . . . . . . . . . . . . 40

Figure 4.20. SMA 100 Bankruptcy and Loss Rate for SAHOL . . . . . . . . . . . 41

Figure 4.21. SMA 100 End Balance for TUPRS . . . . . . . . . . . . . . . . . . . 42

Figure 4.22. SMA 100 Number of Operations for TUPRS . . . . . . . . . . . . . 42

Figure 4.23. SMA 100 Bankruptcy and Loss Rate for TUPRS . . . . . . . . . . . 43

xiii



LIST OF TABLES

Table 4.1. Close values of Stocks at the Start and at the End of the Test Period . . 44

Table 4.2. End Balance of Stocks for the Test Period according to BH Strategy . . 45

Table 4.3. End Balance of Stocks for the Test Phase according to 14 day period

Stochastic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 4.4. Test 1 - 1000 TL initial investment Results . . . . . . . . . . . . . . . . 46

Table 4.5. Test 2 - 10000 TL initial investment Results . . . . . . . . . . . . . . . 48

Table 4.6. Test 3 - 100000 TL initial investment Results . . . . . . . . . . . . . . 50

Table 4.7. Test 4 - 100000 TL initial investment Results with 7 percent loss sell

rate only for the Combined DQN agent and 3 percent profit sell rate for both the

DQN agents and the Combined DQN agent . . . . . . . . . . . . . . . . . . . . . 52

xiv



INTRODUCTION U. HAZIR

1. INTRODUCTION

When the computers emerged their effects in economics was inevitable that they made

significant changes (Backhouse, R. and Cherrier, B. 2016, 1). As the computational power

increases the computers opened a new era for algorithmic trading. The speed and accuracy

of the computers enabled to solve new problems by developing new techniques such as

machine learning (Backhouse, R. and Cherrier, B. 2016, 13-17).

Technical analysis and Fundamental analysis are two main methods for trading deci-

sions and predicting stock prices (Beyaz, E., Tekiner, F., Zeng, X. and Keane, J. 2018).

Fundamental analysis is generally used for long-term investment and it focuses on finan-

cial strength, working capital and profitability of a company (Thomset, M. C. 2015, xiii,

38). On the other hand, technical analysis is used for short term investment and it focuses

on market trends (Kirkpatrick, C. D. and Dahlquist, J. R. 2011, 9) which is based on

market time interval data like: real-time or daily parameters such as Close and Volume.

By using Technical Analysis models day trading concept was available to investors.

Day trading is a trading activity that is based on repeatedly buying and selling the same

financial assets throughout a trading day and it is known as an extremely short-term in-

vestment strategy (Ryu, D. 2012, 2). According to an Analysis of NASAA for day trading

and short-term trading from 26 accounts; seventy percent of the accounts lost money; only

three accounts was profitable at short-term trading and the most successful account in the

study, didn’t apply day trading but only used short-term trading (NASAA, 1999, 53). Ac-

cording to the article named “The Profitability of Day Traders” 64 percent of the day

traders lost money and only the 20 percent of the day traders are more than marginally

profitable; but being among 20 percent requires three to five month learning period to

survive (Jordan, D. J. and Diltz, J. D. 2003, 10).

According to investor analysis methods it is obvious that there is high probability

of losing money but what about Technical Analysis methods and how successful they

are. According to the article named “Performance of technical trading rules: evidence

from Southeast Asian stock markets” when Technical analysis methods like MACD,

Stochastic-D and RSI is applied to Southeast Asian stock markets and compared with

simple Buy and Hold strategy they observed that transaction costs can eliminate trading

1



INTRODUCTION U. HAZIR

profits in most markets, in terms of market timing they found out that using technical in-

dicators are not useful and profitable strategies such as MACD and STOCH-D could not

predict market directions reliably. (Tharavanij, P., Siraprapasiri, V. and Rajchamaha, K.

2015, 2, 39).

Knowledge-based algorithmic trading methods helped us to increase the calculation

speeds; but maybe only Machine Learning based methods can unleash profitable patterns

that are yet unknown to people (Wang, Y., Wang, D., Zhang, S., Feng, Y., Li, S. and

Zhou, Q. 2017). Machine Learning is part of Artificial Intelligence (Anonymous 1) that

learns from data and makes predictions and/or decisions and is usually categorized as

supervised, unsupervised, and reinforcement learning (Li, Y. 2018, 7).

Reinforcement Learning is selected as one of the MIT Technology Review 10 Break-

through Technologies in 2013 and 2017 respectively (Li, Y. 2018, 5). RL consists of an

agent which has the goal to maximize the rewards in the long run is the learner and the de-

cision maker that interacts with the environment by selecting an action and environment

responding to those actions by giving rewards or penalties and presenting new situations

to the agent (Sutton, R. S. and Barto, A. G. 2014, 2015, 53,54,57).

Markov property refers to the memoryless property of a stochastic process that there

is no dependence on previous states, actions or rewards and future states of a process

depends only upon the present state that process is said to be a Markov process (Anony-

mous 2; John, C. and Watkins, C. H. 1989, 39). Markov Decision Process refers to a

process that consists of four tuples: S as State Space, A stands for possible actions for

each state, T stands for a transition function and R stands for a reward function (John, C.

and Watkins, C. H. 1989, 37; Anonymous 3). Q-learning is the one of the most commonly

used reinforcement learning method that is used for any Finite Markov Decision Process

by calculating Q(s,a) (Q state-action pair, Q (Quality) values) function using Bellman

Equation where Q stands for the long-term value (expected future reward) of an action

(Hu, J. 2016; Anonymous 4).

Q-learning is a very good model for a Finite Markov Decision Process; however it

doesn’t fit with stock analysis. The real world of stock markets is not finite and many

different things can affect the performance of a stock; such as good amount of rainfall

throughout the season for a farming company may increase the value of the stock, or
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an unexpected fire at an offshore oil platform may cause a drop of the value of an oil

refinery company that may indirectly affect a plastic toy factory. Also, we don’t know

all the states; because we don’t know all the accounting data of the companies. It is

also impossible to know what other investors willing to act and their acts will change the

performance of the stock market. So that we can say that stock market technical analysis

is a Partially Observable Markov Decision Process (Raval, S. 2018).

We have to use an advance technique to overcome to create a method for a successful

technical analysis method for stock markets that is called Deep-Q Network or Deep-Q

Learning. Q-learning is memoryless but the technical analysis requires memory to benefit

from previous experiences. Calculations of Q values requires too much computation so

we have to benefit from an approximation function. To overcome those limitations Deep-

Q Learning benefits from Artificial Neural Networks and Experienced Replay Memory.

The ANNs are a black box having multiple input and multiple output which operates using

a large number of mostly parallel connected simple arithmetic units (Zupan, J. 1994, 2)

called neurons that DQNs use ANN functions to approximate the Q values (Choudhary, A.

2019). Experienced Replay Memory is used to store the trajectory of the Markov decision

process (MDP) that at each iteration of DQN, a mini-batch of states, actions, rewards, and

next states are sampled to approximate the action-value function and to break the temporal

dependency among the observations in training the deep neural network (Fan, J., Wang,

Z., Xie, Y. and Yang, Z. 2020, 1,2).

There are already some previous studies that apply DQN for technical analysis which

use a DQN agent on a single stock or asset but the major limitation of this approach is that

it is not practical for a large portfolio of stocks, since the prices are continuous (Yang, H.,

Liu, X., Zhong, S. and Walid, A. 2020).

The main purpose of this thesis is to create a DQN agent which tries to maximize the

end balance. The agent starts with limited initial investment money and transaction costs

are applied for creating a harsh environment where it is hard to survive in a long period

of time to simulate the real stock market world. 4 DQN agents for ARCLK, ASELS,

SAHOL and TUPRS, which are BIST-30 index stocks, are created and trained. The daily

parameters : Close, Low, High, Volume and Year are given as input. Also, to benefit

from technical analysis methods Stochastic Oscillator and MACD parameters are given
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as input. Unlike previous works 4 DQN agents tested simultaneously and The Combined

DQN Methodology which I invented is applied to increase the number of transactions

during the test phase.
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2. LITERATURE REVIEW

This thesis based on creating a DQN Reinforcement Learning agent, which accepts

daily and technical analysis parameters as input, for stock markets.

To achieve this goal, at initial step the input technical analysis parameters must be

calculated. In this thesis, MACD and Stochastic Oscillator techniques are introduced as

technical analysis methods.

After learning the scientific principles to prepare the input, it is required to learn the

basic principles of a DQN Reinforcement Learning agent. To understand how a DQN

agent is generated, it should be better to follow the light of the scientific literature. At

first, the mathematics and the logic behind the Reinforcement Learning is introduced by

the concept of the Markov Property and Markov Decision Process (MDP). At second, Re-

inforcement Learning itself is introduced. At third, Q-Learning which is one of the most

known technique used for Reinforcement Learning is introduced. At this step, Epsilon

Greedy Strategy, which is used by the Q-Learning agent, and the Exploration vs. Ex-

ploitation concept is introduced. At forth, we will deep dive to the ANNs, understand the

principles of an Artificial Neuron, ReLU activation function to create the network and the

Adam Optimizer algorithm to update the weights of the neural network. Finally we will

complete our journey by the deep power of Neural Networks and the Experienced Re-

play Memory to upgrade Q-Learning technique to Deep-Q Network. So that the Deep-Q

Network (DQN) and Replay Memory concept is introduced.

2.1. The Moving Average Convergence Divergence (MACD)

The Moving Average Convergence Divergence (MACD) was introduced by Gerald

Appel (Appel, G. 1979) and this technique is a simple subtraction of two moving averages,

it’s mean-reverting around zero so that it is an oscillator, and MACD is also an indicator

that measures the strength and direction of a trend in a stock’s price (Anghel, G. D. I.

2015, 1416).

MACD(t1, t2) =MA (Ci, t1)−MA (Ci, t2) (2.1)

At Equation 2.1, MACD(t1, t2) means the MACD indicator which is the subtraction
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of two series of moving averages with different periods which are t1 and t2.

2.2. Stochastic Oscillator

Stochastic Oscillator was presented by George Lane in 1950s that this indicator is the

combination of %K and %D lines and this method compares the difference of the closing

prices between highest and lowest prices in a short period of time (Chootong, C., and

Sornil, O. 2012, 205).

%K =
100 ∗ C − LT imePeriod

HT imePeriod − LT imePeriod

(2.2)

At Equation 2.2, C is the Close price of the given day which is multiplied by 100 at

first and minimum Low price for the given Time Period is subtracted at second. After-

wards it is divided by the subtraction of the maximum High value and minimum Low

value for the given time period.

%D =
K1 +K2 +K3

3
(2.3)

At Equation 2.3, K1, K2 and K3 represents last three %K indices. %D is the average

of the last 3 days of %K indices.

2.3. Markov Property

Markov property refers to the memoryless property of a stochastic process that there

is no dependence on previous states, actions or rewards and future states of a process de-

pends only upon the present state that process is said to be a Markov process (Anonymous

2; John, C. and Watkins, C. H. 1989, 39).

A stochastic process model is a mathematical model that takes measurements from

the past and the present to make predictions about the future (Tribello, G. 2015).

To become a Markov property the past measurements, states, actions or rewards must

not affect the future predictions. So that the future predictions only depend on the present

states, actions or rewards.
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Figure 2.1. A stochastic process model (Tribello, G. 2015)

Figure 2.2. Markov Property
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2.4. Markov Decision Process (MDP)

MDP is defined by S,A, T,R, γ where S is the set of possible states of the system and

A is the set of possible actions, T represents the transition model, R corresponds to the

reward structure while γ is the discount parameter which represents the relative value of

future versus immediate rewards (LaMar, M. M. 2018).

2.5. Reinforcement Learning

Reinforcement Learning is a Machine Learning technique that it has an Agent which

makes decisions and tries to maximize Rewards inside an Environment which responds

to those actions by presenting new situations and Rewards to the Agent(Sutton, R. S. and

Barto, A. G. 2014, 2015).

Figure 2.3. Reinforcement Learning Agent and Environment Interaction
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2.6. Q-Learning

Q-learning is the one of the most commonly used reinforcement learning method that

is used for any Finite Markov Decision Process by calculating Q(s,a) (Q state-action pair,

Q (Quality) values) function using Bellman equation where Q stands for the long-term

value (expected future reward) of an action (Hu, J. 2016; Anonymous 4).

Before starting Q-learning process a matrix of states and actions need to be created

which is called Q-table. Afterwards, the intersection values states vs actions, which is

called Q-values, filled with a constant value. In general zero is selected as a constant

value.

Because the Q-values initially set to zero, the Q-learning process starts by selecting a

possible random action at initial state which returns new state and reward. Q-values are

updated using Bellman equation at each step and the process run for a previously defined

number of iterations.

Qnew(st, at) = Q(st, at) + α [R(st, at) + γmaxQ(st+1, at+1)−Q(st, at)] (2.4)

At Equation 2.4, which is known as Bellman equation, Qnew(st, at) represents the

updated Q value, Q(st, at) represents current Q value, α is learning rate (which is gen-

erally set to 0.01 or 0.001 by programmers), R(st, at) is the reward for the current state

and action, γ is the discount rate that is used to decrease the effect of an expected future

reward, maxQ(st+1, at+1) represents the maximum Q value expected to return from next

state and possible next action.

Q-learning process ends when the current episode is equal to the number of iterations.

So that selecting the number of iterations is critical. The number of iterations has to

be chosen a high number to distinguish the Q-values clearly. So that the agent can act

according to the Q-table directly after learning process. After learning process the agent

will pick the action with highest Q-value for a given state.
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2.6.1. Epsilon Greedy Strategy

Epsilon Greedy Strategy is a method in which ε value is assigned to 1, it decays

through time and decaying process ends when it is close or equal to 0. A random variable

r is selected and compared with ε and if r > ε then the reinforcement agent will choose

its next action via exploitation otherwise it will choose its next action via exploration

(Deeplizard 2018).

Because that ε is initially set to 1 the reinforcement agent will select a random possible

action so that the agent will explore the environment. After the epsilon decaying period

the reinforcement learning agent had enough knowledge through random actions the agent

has experienced so that it will select the next action according to Q-table which is called

exploitation.

In general, at DQN agents epsilon decays until 0.01. The advantage of this approach

is because there is still with a one percent probability that there is a chance of moving

randomly for the agent; the reinforcement agent keeps learning which makes the process

a never-ending learning process.
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2.7. Artificial Neural Networks (ANN)

According to McCulloch, W.S. and Pitts, W. (1943) it is possible to make a mathemat-

ical (logical) calculations of a set of neurons in a nervous system. The ANNs are a black

box having multiple input and multiple output which operates using a large number of

mostly parallel connected simple arithmetic units (Zupan, J. 1994, 2) called neurons. An

artificial neuron mimics a natural neuron by receiving inputs with weights and applying

an activation function which gives an output value (Gershenson, C. 2003, 2).

Figure 2.4. An Artificial Neuron (Gershenson, C. 2003, 2)

Feed-forward ANNs are neurons organized in layers in which network receives inputs

by neurons in the input layer, send their signals to the forward layers that there may be one

or more intermediate hidden layers, the output of the network is given by the neurons at

output layer and then the errors are propagated backwards (Gershenson, C. 2003, 4). The

weights of the neurons initially assigned to a random number and their value corrected

during the back propagation phase. After the back propagation phase network calculates

the forward process again. This forward calculation of the network and back propagation

mechanism is repeated until ANN converges which means error is minimized and the

system no longer makes it any better.
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Figure 2.5. A Feed-forward ANN using back propagation

2.7.1. Rectified Linear Unit (ReLU)

ReLU is a non linear activation function that when it receives any negative input its

output is zero, but when it receives any positive value its output is equal to value itself

(Glorot, X., Bordes, A. and Bengio, Y. 2011).

f(x) = max(0, x) (2.5)

At Equation 2.5, which is known as ReLU function, x is given as input. It selects the

maximum value of either zero or x itself. If the x is negative then the max function will

select 0 as output. On the other hand when the x is positive x will be always greater than

0, so that the max function will select x itself as output result value.
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2.7.2. Adam Optimizer

Adam, the name is derived from adaptive moment estimation, is a method which is

a combination of AdaGrad (Adaptive Gradient Algorithm) and RMSProp (Root Mean

Square Propagation) method that is designed for efficient stochastic optimization and it

only requires first-order gradients with little memory requirement (Kingma, D. P. and Ba,

J. 2017, 1).

Figure 2.6. Adam performance comparison with other methods (Kingma, D. P. and Ba,

J. 2017, 7)
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2.8. Deep-Q Network (DQN)

DQN is designed to benefit from advancement at Deep Neural Networks which has a

Reinforcement Q-Learning agent interacts with an environment but in this model optimal

action-value function (Q-value) is approximated by a neural network and experience re-

play memory is introduced to store the trajectory of the Markov decision process (MDP)

that at each iteration of DQN, a mini-batch of states, actions, rewards, and next states are

sampled to approximate the action-value function and to break the temporal dependency

among the observations in training the deep neural network (Mnih, V., Kavukcuoglu, K.,

Silver, D. et al 2015, 1), (Fan, J., Wang, Z., Xie, Y. and Yang, Z. 2020, 1,2).

2.8.1. Replay Memory

The experience replay memory is a fixed-size buffer that holds the most recent tran-

sitions (states, actions and rewards) collected by the policy which improves the sample

efficiency of the algorithm and the stability of the network during training; because the

data is used several times for training (Fedus, W., Ramachandran, P., Agarwal, R., Bengio,

Y., and Larochelle, H., Rowland, M. and Dabney, W. 2020, 2).
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3. MATERIAL AND METHOD

In the scope of this thesis, a reinforcement learning agent which tries to maximize the

end balance is designed using DQN technique. First of all, required data is collected from

Mynet website by the help of JavaScript functions using a Google Chrome browser and

preprocessed to create MACD and Stochastic parameters. Python programming language

is used to create the program. Keras library which uses Tensorflow library as backend

will be used to create the neural network. Then the model is trained. Finally 4 DQNs run

simultaneously to apply the Combined DQN Method.

3.1. Assumptions for the Model

Because that the environment in this thesis is just a simulation of the real world; some

assumptions has to be made to create a more realistic conditions.

First of all, the agent starts with a limited initial investment capital. To make condi-

tions difficult for the agent the initial investment is selected as a small amount of money.

This condition increase the possibility of bankrupting of the agent that the agent is likely

to lose all the money at the beginning of the training period as it is observed in the real life

conditions at the report of the NASAA (1999) and at the article named “The Profitability

of Day Traders” (Jordan, D. J. and Diltz, J. D. 2003). For the train period the initial invest-

ment is assigned to 1000 TL. For the first test the initial investment is assigned to 1000

TL, for the second test to 10000 TL and for the third and forth test assigned to 100000 TL.

If the end balance drops below 250 TL it is assumed that the agent is bankrupt. This value

is determined through the observations at the training period if the agent’s end balance

drops below 250 TL then it is unlikely to improve the financial situation.

At second, every transaction a cost is applied which is called transaction cost. For

every buy or sell actions 1 TL transaction fee is applied for the training period.

At third, every buy and sell action price is equal to Close value of the operation day.

At forth, for the training period if the agent is at 5 percent profit it makes a sell action

to benefit from the profit and to increase the number of transactions.

Finally, at the test period if the Combined DQN agent is at specified rate profit or loss

then it makes a sell action to increase the number of transactions and increase to chance
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of attaching to a better performing DQN for the given episode.

3.2. Gathering Data

Data is gathered from Mynet website for the stocks : ARCLK (Anonymous 6), ASELS

(Anonymous 7), SAHOL (Anonymous 8) and TUPRS (Anonymous 9).

Figure 3.7. Screenshot of ARCLK Historical data from Mynet website (Anonymous 6)
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When using Google Chrome browser if F12 is pressed on a Windows or Linux com-

puter Developer Tool opens at the right side of the window. It is possible to execute

JavaScript commands at the Console tab inside the Developer Tool window.

At first, following JavaScript code is executed to correct Month values and make the

values Turkish month values to make the data single language.

1 var replace_Months = $(’body’).html().replace(/January/g,’Ocak’).

replace(/February/g,’Şubat’).replace(/March/g,’Mart’).replace(/

April/g,’Nisan’).replace(/May\u0131s/g,’May’).replace(/May/g,’

Mayıs’).replace(/June/g,’Haziran’).replace(/July/g,’Temmuz’).

replace(/August/g,’Ağustos’).replace(/September/g,’Eylül’).

replace(/October/g,’Ekim’).replace(/November/g,’Kasım’).replace

(/December/g,’Aralık’);

2 $(’body’).html(replace_Months);

Algorithm 1. Replacing all Month values to Turkish by using JavaScript to make the

data single language

At second, following JavaScript code is executed to collect all the historical data from

the website source code and assigning it to an object named "data" (CertainPerformance

2020).

1 const headers = Array.from(

2 document.querySelectorAll(’.table-data th’),

3 th => th.textContent.trim()

4 );

5 // Make an empty array for every item in headers:

6 const data = Array.from(headers, () => []);

7 for (const tr of document.querySelectorAll(’.table-data tr’)) {

8 [...tr.children].forEach((th, i) => {

9 data[i].push(th.textContent.trim());

10 });

11 }

Algorithm 2. Collecting all the historical data from the website source code and

assigning it to an object named "data" (CertainPerformance 2020)
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Finally, following JavaScript code is executed to print the data gathered from the his-

torical data from the website source code. The printed result is copied and pasted to a text

file. Afterwards it is converted by using LibreOffice Calc program to create a comma-

separated values (.csv) file.

1 var VeriCek="";

2 var nVeriCek=data[0].length;

3 var mVeriCek=headers.length;

4 for(var iVeriCek=0;iVeriCek<nVeriCek;iVeriCek++)

5 {

6 var VeriCekLine="";

7 for(var jVeriCek=0;jVeriCek<mVeriCek;jVeriCek++)

8 {

9 if(jVeriCek!=0)

10 VeriCekLine+="\t";

11 VeriCekLine+=data[jVeriCek][iVeriCek];

12 }

13 VeriCek+=VeriCekLine+"\n";

14 }

15 console.log(VeriCek);

Algorithm 3. Printing the data gathered from the historical data from the website source

code by using JavaScript
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Figure 3.8. Screenshot of JavaScript commands executed on Google Chrome Developer

Tools Console

Figure 3.9. Screenshot of JavaScript results on Google Chrome Developer Tools

Console
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3.3. Preprocessing Data to Calculate MACD and Stochastic Values

MACD is the subtraction of 26 day period of EMA from 12 day period of EMA. To

calculate MACD it is required to calculate the EMA values at first.

EMAi = Ci
2

t+ 1
+ EMAi−1

(
1− 2

t+ 1

)
(3.6)

At Equation 3.6 (Anonymous 5), t stands for time period interval, i is the given day,

i−1 represents previous day andCi is the Close price for the given day. By using Equation

3.6, EMA12 and EMA26 parameters are calculated by assigning 12 and 26 to t (time

period) value.

MACDi = EMA12i − EMA1226 (3.7)

At Equation 3.7, it can be easily understood that MACD value of a given (ith) day is

just the subtraction of EMA26 value from EMA12 value for the given day.

signali =MACDi
2

t+ 1
+ signali−1

(
1− 2

t+ 1

)
(3.8)

At Equation 3.8 (Anonymous 5), MACDsignal9 indicator is calculated by setting

Time Period t to 9 where i stands for the given day and i− 1 represents previous day.

The pure data, which is obtained from Mynet website via JavaScript code, is in re-

verse order. The closest day is on the top and the past day is on the bottom of the csv file.

So that to obtain the preprocessed data this condition should be taken into consideration.

The pure data at csv file has Date, Close, Low, High, V olume and Y ear parameters.

1 import numpy as np # linear algebra

2 import pandas as pd #For reading data from file

3

4 df=pd.read_csv(stockFileName)

5 X=df.loc[:,"Date":"Year"].values

6

7 n=X.shape[0]

8 Xmacd=np.zeros((n,4))#EMA12,EMA26,MACD,MACDsignal9

Algorithm 4. Start point for gathering pure data and make the code ready for calculating

MACD parameters using Pyhton language
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At Algorithm 4, at first the csv file is read and assigned to df (dataframe) object and

then the values are assigned to the X in a numpy array type. n stands for the number of

days the data contains. Xmacd is the two dimensional numpy array that holds MACD

parameters for each day. These MACD parameters are :EMA12, EMA26, MACD and

MACDsignal9.

10 #EMA12

11 avgMacd12=0

12 for k in range(n-12):

13 index=n-13-k

14 if(k==12):

15 avgMacd12=(X[index+1,1]+X[index+2,1]+X[index+3,1]+X[index

+4,1]+X[index+5,1]+X[index+6,1]+X[index+7,1]+X[index

+8,1]+X[index+9,1]+X[index+10,1]+X[index+11,1]+X[index

+12,1])/12

16 Xmacd[index,0]=(X[index,1]*2/13)+(avgMacd12*(1-(2/13)))

17 else:

18 Xmacd[index,0]=(X[index,1]*2/13)+(Xmacd[index

-1,0]*(1-(2/13)))

Algorithm 5. Calculating EMA12 parameter

At Algorithm 5, at first an index parameter is generated because the data is in reverse

order, at second because it is not possible to calculate values for the oldest 12 days are

skipped, avgMacd12 refers to the average of the skipped oldest 12 days Close parameter

values to calculate the first EMA12 value which is assigned to Xmacd[index, 0] array

value. After obtaining the first EMA12 value it is easy to calculate next EMA12 value

by adding X[index, 1] ∗ 2/13) which is derived from the Equation 3.6.
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20 #EMA26

21 avgMacd26=0

22 for k in range(n-26):

23 index=n-27-k

24 if(k==26):

25 avgMacd26=(X[index+1,1]+X[index+2,1]+X[index+3,1]+X[index

+4,1]+X[index+5,1]+X[index+6,1]+X[index+7,1]+X[index

+8,1]+X[index+9,1]+X[index+10,1]+

26 X[index+11,1]+X[index+12,1]+X[index+13,1]+X[

index+14,1]+X[index+15,1]+X[inde14x+16,1]+X[

index+17,1]+X[index+18,1]+X[index+19,1]+X[

index+20,1]+

27 X[index+21,1]+X[index+22,1]+X[index+23,1]+X[

index+24,1]+X[index+25,1]+X[index+26,1])/26

28 Xmacd[index,1]=(X[index,1]*2/27)+(avgMacd26*(1-(2/27)))

29 else:

30 Xmacd[index,1]=(X[index,1]*2/27)+(Xmacd[index

-1,1]*(1-(2/27)))

Algorithm 6. Calculating EMA26 parameter

At Algorithm 6, the same process is applied to calculate the EMA12; but this time t

(Time Period) set to 26 according to the Equation 3.6.

32 #MACD

33 for k in range(n-27):

34 index=n-28-k

35 Xmacd[index,2]=Xmacd[index,0]-Xmacd[index,1]

Algorithm 7. Calculating MACD parameter

At Algorithm 7, because EMA12 and EMA26 parameters are calculated it is easy

to calculate the MACD parameter which is the subtraction of EMA26 from EMA12

according to the Equation 3.7. Xmacd[index, 0] stands for EMA12, Xmacd[index, 1]

is EMA26 and Xmacd[index, 2] is the MACD parameter.
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37 #MACDsignal9

38 avgMACD9=0

39 for k in range(n-36):

40 index=n-37-k

41 if(k==36):

42 avgMACD9=(Xmacd[index+1,2]+Xmacd[index+2,2]+Xmacd[index

+3,2]+Xmacd[index+4,2]+Xmacd[index+5,2]+Xmacd[index

+6,2]+Xmacd[index+7,2]+Xmacd[index+8,2]+Xmacd[index

+9,2])/9

43 Xmacd[index,3]=(Xmacd[index,2]*2/10)+(avgMACD9*(1-(2/10)))

44 else:

45 Xmacd[index,3]=(Xmacd[index,2]*2/10)+(Xmacd[index

-1,3]*(1-(2/10)))

Algorithm 8. Calculating MACDsignal9 parameter

At Algorithm 8, to calculate the first MACDsignal9 parameter it is required to cal-

culate the average MACD value of the skipped last additional 9 day parameters (n− 36

refers to that condition) and assigned to avgMACD9 variable. After that MACD signal

value is calculated using the Equation 3.8.

To calculate Stochastic parameters first max and min values for a given period has

to be observed. StockhasticMax14 is the maximum High value for the last 14 days

and StockhasticMin14 is the minimum Low value for the last 14 days. Likewise;

StockhasticMax5 is the maximumHigh value for the last 5 days and StockhasticMin5

is the minimum Low value for the last 5 days.

StockhasticK14 and StockhasticK5 indices calculated using Equation 2.2.

StockhasticD14 and StockhasticD5 indices calculated using Equation 2.3.

47 #%% Stockhastic Parameters

48 Xstoch=np.zeros((n,8))#StockhasticMax14,StockhasticMin14,

StockhasticK14,StockhasticD14,StockhasticMax5,StockhasticMin5,

StockhasticK5,StockhasticD5

Algorithm 9. Calculating MACDsignal9 parameter

At Algorithm 9, Xstoch is the two dimensional numpy array that holds Stochastic

parameters for each day. These Stochastic parameters are : StockhasticMax14,

StockhasticMin14, StockhasticK14, StockhasticD14, StockhasticMax5,
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StockhasticMin5, StockhasticK5 and StockhasticD5.

50 for k in range(n-14):

51 index=n-15-k

52 minStoch14=0

53 maxStoch14=0

54 for l in range(14):

55 if(l==0):

56 minStoch14=X[index+l,2]

57 maxStoch14=X[index+l,3]

58 else:

59 if(X[index+l,2]<minStoch14):

60 minStoch14=X[index+l,2]

61 if(X[index+l,3]>maxStoch14):

62 maxStoch14=X[index+l,3]

63 Xstoch[index,0]=maxStoch14

64 Xstoch[index,1]=minStoch14

65 if(maxStoch14-minStoch14!=0):

66 Xstoch[index,2]=100*(X[index,1]-minStoch14)/maxStoch14-

minStoch14

67 if(k>1):

68 Xstoch[index,3]=(Xstoch[index,2]+Xstoch[index+1,2]+Xstoch[

index+2,2])/3

Algorithm 10. Calculating StockhasticMax14, StockhasticMin14, StockhasticK14 and

StockhasticD14 parameters

At Algorithm 10, an index variable is assigned because the data is in reverse or-

der. Xstoch[index, 0] stands for StockhasticMin14 and Xstoch[index, 1] stands for

StockhasticMax14. Xstoch[index, 2] stands for StockhasticK14 and calculated ac-

cording to Equation 2.2. Xstoch[index, 3] stands for StockhasticD14 and calculated

according to Equation 2.3.
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70 for k in range(n-5):

71 index=n-6-k

72 minStoch5=0

73 maxStoch5=0

74 for l in range(5):

75 if(l==0):

76 minStoch5=X[index+l,2]

77 maxStoch5=X[index+l,3]

78 else:

79 if(X[index+l,2]<minStoch5):

80 minStoch5=X[index+l,2]

81 if(X[index+l,3]>maxStoch5):

82 maxStoch5=X[index+l,3]

83 Xstoch[index,4]=maxStoch5

84 Xstoch[index,5]=minStoch5

85 if(maxStoch5-minStoch5!=0):

86 Xstoch[index,6]=100*(X[index,1]-minStoch5)/maxStoch5-

minStoch5

87 if(k>1):

88 Xstoch[index,7]=(Xstoch[index,6]+Xstoch[index+1,6]+Xstoch[

index+2,6])/3

Algorithm 11. Calculating StockhasticMax5, StockhasticMin5, StockhasticK5 and

StockhasticD5 parameters

At Algorithm 11, an index variable is assigned because the data is in reverse or-

der. Xstoch[index, 4] stands for StockhasticMin5 and Xstoch[index, 5] stands for

StockhasticMax5. Xstoch[index, 6] stands for StockhasticK5 and calculated accord-

ing to Equation 2.2. Xstoch[index, 7] stands for StockhasticD5 and calculated accord-

ing to Equation 2.3.

After calculating MACD and Stochastic parameters, all the data (daily parameters,

MACD and Stochastic parameters) written into a new csv file in a correct order to gener-

ate input data. Input data consists of these parameters : Close, Low, High, Volume, Year,

EMA12, EMA26, MACD, MACDsignal9, StochasticMax14, StochasticMin14, Stocha-

sticK14, StochasticD14, StochasticMax5, StochasticMin5, StochasticK5 and Stochas-

ticD5.
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3.4. Programming Environment

JavaScript is a high-level, often just-in-time compiled, and multi-paradigm program-

ming language that conforms to the ECMAScript specification which is the most popular

programming language in the world (DeGroat, T.J. 2019), (Anonymous 10). In this the-

sis, JavaScript is used for gathering pure data from Mynet website using Google Chrome

browser.

Python is an interpreted, high-level, object-oriented, multi-paradigm and a structured

programming language which has many libraries for machine-learning (Mehta, R. 2019),

(Anonymous 11). Python is used for creating the DQN reinforcement learning agent.

TensorFlow is a free and open-source software library for machine learning which

is developed by the Google Brain team. (Yegulalp, S. 2019), (Anonymous 12). In this

thesis, it is used for backend for the Keras library.

Keras is an open-source deep learning API written in Python which uses Tensorflow

library as backend and its core structure is based on layers and models (Anonymous 13),

(Anonymous 14). At this thesis, it is used for designing ANN to approximate Q-values

which is an important part of the creating a DQN agent.

3.5. Creating DQN

Creating DQN mechanism is the goal of this thesis. At first, the preprocessed data is

splitted into training data and test data for a stock. Training period starts at 08.03.2000

which is the beginning of the processed data and ends at 31.12.2014. Test period starts

at 01.01.2015 and ends at 21.12.2019. Input data consists of 17 parameters which are

: Close, Low, High, Volume, Year, EMA12, EMA26, MACD, MACDsignal9, Stochas-

ticMax14, StochasticMin14, StochasticK14, StochasticD14, StochasticMax5, Stochas-

ticMin5, StochasticK5 and StochasticD5.

Input parameters given to ANN of the DQN at input layer to approximate the Q-

values. At first hidden layer there are 540 neurons. At second hidden layer there are 180

neurons. At third hidden layer there are 64 neurons. At forth hidden layer there are 32

neurons. At fifth hidden layer there are 8 neurons. For all hidden layers ReLU activation

function is used. For a DQN action space is wait, buy and sell so that we have 3 neurons
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at output layer. Output layer uses linear as activation function what means the value of

the neuron is used directly without any mathematical operation. Adam optimizer with

learning rate of 0.001 is used.

Figure 3.10. The Artificial Neural Network to approximate the Q-values

The Replay Memory is used to predict next action from previous experience which

is set to 1000. Batch size is assigned as 32 which means random 32 experience will

be selected from the memory. γ is set to 0.95 which is the discount rate and defined at

Equation 2.4 which is known as Bellman equation.
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3.6. Training Method

At training phase DQN agent starts with 1000 TL initial capital. The training phase

consists of 5000 episodes.

1 def adaptiveEGreedy(self):

2 if self.epsilon > self.epsilon_min:

3 self.epsilon *= self.epsilon_decay

Algorithm 12. Decaying the ε according to the Epsilon Greedy Strategy

Epsilon Greedy Strategy is used at training phase. Epsilon (ε) is set to 1 at the start

of the training phase decays by multiplying epsilondecay variable which is assigned to

0.995; until 0.01 according to the Algorithm 12.

1 def act(self, state):

2 state = np.array(state)

3 if np.random.rand() <= self.epsilon:

4 return random.randrange(self.action_size)

5 act_values = self.model.predict(state)

6 return np.argmax(act_values[0])

Algorithm 13. Application of the Epsilon Greedy Strategy when selecting an action

The agent explores the environment by random actions at the beginning of the training

phase if random variable r <= ε, after ε decays agent acts according to the Q-values

which is approximated by ANN model according to the Algorithm 13.
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1 for e in range(1,episode_count+1):

2 #initialize environment

3 state = env.reset()

4

5 total_reward=0

6

7 for time in range(numberOfDays):

8 action = agent.act(state) #select an action

9 next_state, reward, done = env.step(action)

10

11 #remember / storage

12 agent.remember(state, action, reward, next_state, done)

13

14 #update state

15 state = next_state

16

17 #replay

18 agent.replay(batch_size)

19

20 total_reward+=reward

21

22 if done:

23 break

24 #decay Epsilon until 0.01

25 agent.adaptiveEGreedy()

Algorithm 14. TrainingAlgorithm

According to the Algorithm 14, training phase starts with a for loop which is an itera-

tion for 5000 episodes. For each episode, initially environment is reset to initial state and

total_reward is set to 0.

Then for each possible work day in training period: at first we select an action. Action

is selected according to Algorithm 13 so that Epsilon Greedy Strategy is applied. At

second, we apply the selected action by step function which returns the tuple consist of

nextstate, reward and done values. done value is true if the agent bankrupts or it finishes

the episode successfully. We store the current states and elements of the agent at memory.

The state is updated to the next state which means moving agent to the next day. Then
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according to replay memory ANN is trained to calculate the new q-values. Finally, if it is

done we break end end the episode. After the episode is end ε is decayed until the value

of 0.01.

At training phase, a reward with the profit value is given after sell operation. Also if

the agent bought stock but holding it -0.2 point penalty is applied and if the agent has no

stock but also not buying -0.5 point penalty is applied to encourage the agent to make a

transaction.

3.7. Test Method

There are 4 tests experimented during this thesis. At first three tests profit and loss sell

rate is assigned to 5 percent for the Combined DQN Method and 5 percent profit sell rate

is assigned for the DQN agents. At first test initial capital is set to 1000 TL with a constant

1 TL transaction cost. At second test initial capital is set to 10000 TL with a constant 1 TL

transaction cost. At third test initial capital is set to 100000 TL with a 0.0018 transaction

cost rate which is used to calculation of the real cost by multiplying the number of stocks

bought with the Close price of the day. At forth test initial capital is set to 100000 TL

with a 0.0018 transaction cost rate is which is the same as third test; however at this test

loss sell rate is assigned to 7 percent for the Combined DQN Method and profit sell rate

is assigned to 3 percent both for the DQN agents and the Combined DQN Method. Test

phase took 100 episodes. During the test phase 4 DQNs run simultaneously to calculate

the Combined DQN Method.

At test phase, a reward with the profit value is given after sell operation. Also if the

agent bought stock but holding it -0.2 point penalty is applied and if the agent has no

stock but also not buying -0.1 point penalty is applied to encourage the agent to make a

transaction.
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1 for e in range(1,episode_count+1):

2 #initialize and reset environment

3 for i in range(stockSize):

4 states[i] = envs[i].reset()

5 total_rewards[i]=0

6 isDone[i]=False

7 c.reset()

8 DateCurrent=DateStart

9 while DateCurrent!=DateEnd:

10 isNoAction=True

11 for i in range(stockSize):

12 isDate[i]=False

13 date[i]=envs[i].data.iloc[envs[i].t,0]

14 isDate[i]=date[i]==DateStr

15 isNoAction=isNoAction and isDate[i]==False

16 for i in range(stockSize):

17 if isDate[i]==True:

18 #select an action

19 actions[i] = agents[i].act(states[i])

20 next_states[i], rewards[i], done[i], date[i],

prices[i], acts[i] = envs[i].step(actions[i

])

21 lastMoneyValues[i]=envs[i].money+(envs[i].

numberOfStock*envs[i].finalPrice)

22 c.acts[i]=acts[i]

23 c.prices[i]=prices[i]

24 c.lastMoneyValues[i]=lastMoneyValues[i]

25

26 ApplyCombinedDQN(isDate, c)

27 DateCurrent=DateCurrent+ timedelta(days=1)

Algorithm 15. Test Algorithm

According to the Algorithm 15, test phase requires some small modifications from

the training phase. At test phase ε is set to 0.01 and it doesn’t decays any more; so that

Epsilon Greedy Strategy is not applied at test phase.

Test phase is executed for 100 episodes. Unlike the training phase, everything is stored

in arrays; because 4 DQNs run simultaneously.
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At first, 4 DQNs and the Combined DQN (c) are reset to initial states. Current Date

is set to start date. After that, for each stock if it is an operation day we select a new

action which is 99 percent determined from Q-values according to Algorithm 13. Then

selected action is applied. After that the Combined DQN Method is applied. Finally,

DateCurrent is set to next day. If the test period is finished the execution of the program

starts the new episode.
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3.8. The Combined DQN Method

The Combined DQN Method is created; to increase the chance of making a transac-

tion.

1 if c.numberOfStock==0:#don’t have stock

2 cBuySignal=False

3 for cBuySingalIndex in range(stockSize):

4 if isDate[cBuySingalIndex]:

5 if c.acts[cBuySingalIndex]==1:

6 cBuySignal=True

7 break

8 if cBuySignal:#buy signal

9 cPrice=0

10 cStockName=""

11 buyTargetIndex=-1

12 for buyTarget in range(stockSize):#find best performing

with buy signal

13 if isDate[buyTarget]:

14 if buyTargetIndex==-1 and c.acts[buyTarget]==1:

15 buyTargetIndex=buyTarget

16 elif buyTargetIndex>-1 and c.acts[buyTarget]==1:

17 if c.lastMoneyValues[buyTarget]>c.

lastMoneyValues[buyTargetIndex]:

18 buyTargetIndex=buyTarget

19 if buyTargetIndex!=-1:

20 cPrice=c.prices[buyTargetIndex]

21 c.currentStockIndex=buyTargetIndex

22 if cPrice>=c.money+actCost:#don’t have enough money

23 c.ISbankrupt=True

24 c.done=True

25 else:

26 cStockName=c.stockName[c.currentStockIndex]

27 ncStock=math.floor((c.money-(actCost*2))/cPrice)

28 if c.money-(cPrice*ncStock+(actCost*2))==0:

29 ncStock-=1

30

31 Continue at next page...
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32 Continued from previous page...

33 if ncStock>0:

34 c.buyPrice=cPrice

35 c.numberOfStock=ncStock

36 c.expectedSellPrice=cPrice*expectedSellRate+(

actCost*2)/ncStock

37 c.lossSellPrice=cPrice*lossSellRate-(actCost*2)/

ncStock

38 c.initmoney=c.money

39 c.money-=(cPrice*c.numberOfStock+actCost)

40 c.finalDate=date[buyTargetIndex]

41 c.numberOfOperations+=1

42 else:

43 c.ISbankrupt=True

44 c.done=True

45 else:# has stock

46 #if we have sell signal for current stock

47 if isDate[c.currentStockIndex]:

48 if c.acts[c.currentStockIndex]==2:#sell signal

49 c.money+=c.prices[c.currentStockIndex]*c.numberOfStock-

actCost

50 c.finalDate=date[c.currentStockIndex]

51 c.numberOfOperations+=1

52 c.numberOfStock=0

53 c.buyPrice=0

54 c.currentStockIndex=-1

55 #we don’t have sell signal but we are at profit

56 elif c.prices[c.currentStockIndex]>c.expectedSellPrice:#

higher than expected sell price

57 c.money+=c.prices[c.currentStockIndex]*c.numberOfStock-

actCost

58 c.finalDate=date[c.currentStockIndex]

59 c.numberOfOperations+=1

60 c.numberOfStock=0

61 c.buyPrice=0

62 c.currentStockIndex=-1

63 Continue at next page...
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64 Continued from previous page...

65 #we don’t have sell signal but we are at loss

66 elif c.prices[c.currentStockIndex]<c.lossSellPrice:#lower

than loss sell price

67 c.money+=c.prices[c.currentStockIndex]*c.numberOfStock-

actCost

68 c.finalDate=date[c.currentStockIndex]

69 c.numberOfOperations+=1

70 c.numberOfStock=0

71 c.buyPrice=0

72 c.currentStockIndex=-1

Algorithm 16. The Combined DQN Algorithm

According to the Algorithm 16, if The Combined DQN agent has no stock, it attaches

itself to the best performing DQN which has a buy signal (which produces buy action).

The Combined DQN agent detaches itself if the attached DQN gives sell signal (which

produces sell action) or the stock is at the specified rate loss or profit. The Combined

DQN agent waits for the next buy action and attaches itself to the best performing DQN

for a given day and it repeats the processes of attaching and detaching.

4. RESULTS AND DISCUSSION

After the methods designed, the training process took 5000 steps for each stocks. The

calculation period for training phase took almost 45 days for a single stock. Four tests are

made. At first three tests profit and loss sell rate is assigned to 5 percent for the Combined

DQN Method and 5 percent profit sell rate is assigned for the DQN agents. At first test

initial capital is set to 1000 TL with a constant 1 TL transaction cost, at second test initial

capital is set to 10000 TL with a constant 1 TL transaction cost. At third and forth test

initial capital is set to 100000 TL with a 0.0018 transaction cost rate which is used to

calculation of the real cost by multiplying the number of stocks bought with the Close

price of the day. At forth test loss sell rate is assigned to 7 percent for the Combined

DQN Method and profit sell rate is assigned to 3 percent both for the DQN agents and

the Combined DQN Method. Test phase took 100 episodes and each test calculation took

more than 2 days. During the test phase 4 DQNs run simultaneously to calculate the
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Combined DQN Method.

4.1. Results for the Training Phase

At the training phase Epsilon Greedy Strategy is applied. At first the agent explores

the environment and at when the agent learns the environment, it starts to exploit its

knowledge.

Figure 4.11. Epsilon decays according to the Epsilon Greedy Strategy

4.1.1. Training Phase for ARCLK

Figure 4.12 shows that 100 Episodes of Simple Moving Average End Balance for

ARCLK is rising from 1781.28 TL at the 101st Episode to 5219.57 TL at the 5000th

Episode.

Figure 4.13 shows that 100 Episodes of Simple Moving Average Number of Opera-

tions for ARCLK is decreasing from 895.44 at the 101st Episode to 39.38 at the 5000th

Episode.

Figure 4.14 shows that 100 Episodes of Simple Moving Average for ARCLK loss rate

is decreasing from 57 percent at the 101st Episode to 2 percent at the 5000th Episode

and bankruptcy rate is decreasing from 47 percent at the 101st Episode to 2 percent at the

5000th Episode.
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Figure 4.12. SMA 100 End Balance for ARCLK

Figure 4.13. SMA 100 Number of Operations for ARCLK
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Figure 4.14. SMA 100 Bankruptcy and Loss Rate for ARCLK

4.1.2. Training Phase for ASELS

Figure 4.15. SMA 100 End Balance for ASELS

Figure 4.15 shows that 100 Episodes of Simple Moving Average End Balance for

ASELS is rising from 3590.89 TL at the 101st Episode to 8978.65 TL at the 5000th

Episode.
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Figure 4.16. SMA 100 Number of Operations for ASELS

Figure 4.16 shows that 100 Episodes of Simple Moving Average Number of Opera-

tions for ASELS is decreasing from 685.81 at the 101st Episode to 39.32 at the 5000th

Episode.

Figure 4.17. SMA 100 Bankruptcy and Loss Rate for ASELS

Figure 4.17 shows that 100 Episodes of Simple Moving Average for ASELS loss rate

is decreasing from 59 percent at the 101st Episode to 5 percent at the 5000th Episode

and bankruptcy rate is decreasing from 57 percent at the 101st Episode to 5 percent at the
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5000th Episode.

4.1.3. Training Phase for SAHOL

Figure 4.18. SMA 100 End Balance for SAHOL

Figure 4.18 shows that 100 Episodes of Simple Moving Average End Balance for SA-

HOL is rising from 781.98 TL at the 101st Episode to 3318.71 TL at the 5000th Episode.

Figure 4.19. SMA 100 Number of Operations for SAHOL
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Figure 4.19 shows that 100 Episodes of Simple Moving Average Number of Opera-

tions for SAHOL is decreasing from 809.57 at the 101st Episode to 41.65 at the 5000th

Episode.

Figure 4.20. SMA 100 Bankruptcy and Loss Rate for SAHOL

Figure 4.20 shows that 100 Episodes of Simple Moving Average for SAHOL loss rate

is decreasing from 78 percent at the 101st Episode to 0 percent at the 5000th Episode

and bankruptcy rate is decreasing from 59 percent at the 101st Episode to 0 percent at the

5000th Episode.
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4.1.4. Training Phase for TUPRS

Figure 4.21. SMA 100 End Balance for TUPRS

Figure 4.21 shows that 100 Episodes of Simple Moving Average End Balance for

TUPRS is rising from 2347.22 TL at the 101st Episode to 5503.66 TL at the 5000th

Episode.

Figure 4.22. SMA 100 Number of Operations for TUPRS

42



RESULTS AND DISCUSSION U. HAZIR

Figure 4.22 shows that 100 Episodes of Simple Moving Average Number of Opera-

tions for TUPRS is decreasing from 1048.4 at the 101st Episode to 40.43 at the 5000th

Episode.

Figure 4.23. SMA 100 Bankruptcy and Loss Rate for TUPRS

Figure 4.23 shows that 100 Episodes of Simple Moving Average for TUPRS loss rate

is decreasing from 44 percent at the 101st Episode to 0 percent at the 5000th Episode

and bankruptcy rate is decreasing from 28 percent at the 101st Episode to 0 percent at the

5000th Episode.
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4.2. Results for the Test Phase

Test period starts at 01.01.2015 and ends at 21.12.2019. 01.01.2015 is holiday so

the next operation day is 02.01.2015. At first, BH strategy is calculated for the test

phase. There is no buy and sell signal for the test period; because MACD is greater

than MACDsignal9 for the input data. There has to be a transition between MACD and

MACDsignal9 values to create a buy or sell signal. Therefore; it was not possible to ana-

lyze the MACD technique for the test period. At second Stochastic Oscillator for 14 day

period is calculated. Finally, result of the tests shown and analyzed.

Table 4.1. Close values of Stocks at the Start and at the End of the Test Period

Close Value

Stocks 02.01.2015 21.12.2019

ARCLK 13.35 20.66

ASELS 5.85 19.31

SAHOL 9.01 9.23

TUPRS 37.87 125.5

For the Test1 initial investment is 1000 TL, for Test2 it is 10000 TL. For Test1 and

Test2 1 TL transaction fee is applied. For Test3 and Test 4 initial investment is 100000

TL and 0.0018 cost rate is applied for every transaction.
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4.2.1. Buy and Hold Strategy Calculation for the Test Phase

Considering the cost values following results can be calculated.

Table 4.2. End Balance of Stocks for the Test Period according to BH Strategy

End Balance

Stocks Test1 Test2 Test3 = Test4

ARCLK 1538.94 15465.88 154199.15

ASELS 3286.2 33001.14 328895.23

SAHOL 1022.2 10243.98 102073.45

TUPRS 3276.38 33132.2 330130.18

4.2.2. 14 Day Period Stochastic Oscillator Calculation for the Test Phase

According to Stochastic Oscillator when there is a transition that if it becomes %K

is greater than %D then we buy and if it becomes %K is less than %D then we sell.

Considering the cost values following results can be calculated for the 14 day period

Stochastic Oscillator.

Table 4.3. End Balance of Stocks for the Test Phase according to 14 day period

Stochastic Oscillator

End Balance

Stocks Test1 Test2 Test3 = Test4

ARCLK 586.04 10764.42 47054.03

ASELS 1620.89 21788.16 97539.15

SAHOL 360.92 7570.13 33525.15

TUPRS 835.15 12490.14 57841.47
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4.2.3. Test 1

Test 1, consists of 100 episodes. For Test 1 initial investment is 1000 TL and for every

transaction there is a constant fee which is equal to 1 TL.

Table 4.4. Test 1 - 1000 TL initial investment Results

ARCLK ASELS SAHOL TUPRS Combined

Average End Bal-

ance

1203.46 1331.57 1000.77 1178.52 1058.73

BH Strategy End

Balance

1538.94 3286.20 1022.20 3276.38 X

Number of Episodes

Better than BH

8 4 34 0 X

14 Day Period

Stochastic Oscillator

End Balance

586.04 1620.89 360.92 835.15 X

Number of Episodes

Better than Stochas-

tic Oscillator

100 15 100 100 X

Maximum End Bal-

ance

2298.24 4435.99 1136.67 3121.48 2030.45

Minimum End Bal-

ance

697.34 563.00 807.17 857.46 306.79

Average Num. of

Operations

14.89 12.66 9.47 13.98 168.44

% At Loss 24 24 44 18 55
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According to Table 4.4 the most successful DQN for the Test1 is the one that is trained

with the data of ASELS. ASELS has the maximum average end balance and the maximum

end balance. Combined DQN method is one of the worst performing method. Combined

DQN method has the minimum end balance and the 55 percent of the episodes ends at

loss. DQN agent for ARCLK has 8, ASELS has 4, SAHOL has 34 episodes out of 100

episodes perform better than BH strategy. DQN agent for TUPRS is not able to perform

any better than BH strategy for all episodes. Only 14 day period of Stochastic Oscillator

value for ASELS is greater than Average End Balance of the DQN agent for ASELS. Still

15 episodes out of 100 for ASELS DQN agent performs better than Stochastic Oscillator.

At Test1 Stochastic Oscillator is only profitable for ASELS.
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4.2.4. Test 2

Test 2, consists of 100 episodes. For Test 2 initial investment is 10000 TL and for

every transaction there is a constant fee which is equal to 1 TL.

Table 4.5. Test 2 - 10000 TL initial investment Results

ARCLK ASELS SAHOL TUPRS Combined

Average End Bal-

ance

12062.13 15687.91 10222.14 12257.79 13472.07

BH Strategy End

Balance

15465.88 33001.14 10243.98 33132.20 X

Number of Episodes

Better than BH

11 10 45 0 X

14 Day Period

Stochastic Oscillator

End Balance

10764.42 21788.16 7570.13 12490.14 X

Number of Episodes

Better than Stochas-

tic Oscillator

64 21 100 20 X

Maximum End Bal-

ance

17635.85 41864.28 12214.13 30951.26 36375.93

Minimum End Bal-

ance

6636.31 4973.61 7938.01 8125.59 5662.74

Average Num. of

Operations

11.65 12.34 9.11 11.61 170.91

% At Loss 20 25 38 13 30

48



RESULTS AND DISCUSSION U. HAZIR

According to Table 4.5 the most successful DQN for Test2 is the one that is trained

with the data of ASELS. ASELS has the maximum average end balance and the maximum

end balance. SAHOL is the worst performing method. SAHOL has the minimum average

end balance and the 38 percent of the episodes ends at loss. Combined DQN method

performs a little bit better that loss rate drops to 30 percent and it has the second largest

average end balance value. DQN agent for ARCLK has 11, ASELS has 10, SAHOL

has 45 episodes out of 100 episodes perform better than BH strategy. DQN agent for

TUPRS is not able to perform any better than BH strategy for all episodes. DQN agents

for ARCLK and SAHOL has better average value than 14 day period Stochastic Oscillator

method. Still 21 episodes for ASELS and 20 episodes for TUPRS out of 100 episodes

DQN agents perform better than Stochastic Oscillator. At Test2, Stochastic Oscillator

is at profit for ARCLK, ASELS and TUPRS; because that the cost is small and initial

investment is increased to 10000 TL.
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4.2.5. Test 3

Test 3, consists of 100 episodes. For Test 3 initial investment is 100000 TL and for

every transaction there is a rate fee for the price which is equal to 0.0018.

Table 4.6. Test 3 - 100000 TL initial investment Results

ARCLK ASELS SAHOL TUPRS Combined

Average End Bal-

ance

111596.89 140891.26 102153.06 129841.22 124792.45

BH Strategy End

Balance

154199.15 328895.23 102073.45 330130.18 X

Number of

Episodes Better

than BH

6 6 49 5 X

14 Day Period

Stochastic Oscil-

lator End Balance

47054.03 97539.15 33525.15 57841.47 X

Number of

Episodes Better

than Stochastic

Oscillator

100 83 100 100 X

Maximum End

Balance

219865.71 671088.97 126417.73 365082.81 527718.87

Minimum End

Balance

63917.92 59573.04 85245.87 86989.54 58005.91

Average Num. of

Operations

10.35 9.97 9.07 10.10 165.57

% At Loss 32 32 36 23 41
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According to Table 4.6 the most successful DQN for Test3 is the one that is trained

with the data of ASELS. ASELS has the maximum average end balance and the maxi-

mum end balance. SAHOL is the worst performing method. SAHOL has the minimum

average end balance and the 36 percent of the episodes ends at loss. Combined DQN

method is not performing better but has the second maximum end balance. All DQNs and

Combined DQN Method loss rate increased due to the effect of the cost rate. DQN agent

for ARCLK has 6, ASELS has 6, SAHOL has 49 and TUPRS has 5 episodes out of 100

episodes perform better than BH strategy. Only 17 episodes out of 100 episodes for the

DQN for ASELS performs poorly than 14 day period Stochastic Oscillator. For the other

DQN agents their performance surpass the 14 day period Stochastic Oscillator. At Test3,

Stochastic Oscillator is in loss due to the increase of the costs; because of using a cost

rate rather than a fix cost.
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4.2.6. Test 4

Test 4, consists of 100 episodes. For Test 4 initial investment is 100000 TL and for

every transaction there is a rate fee for the price which is equal to 0.0018. Loss sell rate is

assigned to 7 percent and profit sell rate is assigned to 3 percent for the Combined DQN

Method. Also, profit sell rate is assigned to 3 percent for the DQNs.

Table 4.7. Test 4 - 100000 TL initial investment Results with 7 percent loss sell rate only

for the Combined DQN agent and 3 percent profit sell rate for both the DQN agents and

the Combined DQN agent

ARCLK ASELS SAHOL TUPRS Combined

Average End Bal-

ance

116511.96 131467.37 101189.90 121271.15 140166.67

BH Strategy End

Balance

154199.15 328895.23 102073.45 330130.18 X

Number of Episodes

Better than BH

10 5 45 2 X

14 Day Period

Stochastic Oscilla-

tor End Balance

47054.03 97539.15 33525.15 57841.47 X

Number of Episodes

Better than Stochas-

tic Oscillator

100 83 100 100 X

Maximum End Bal-

ance

185227.24 531387.10 115306.15 366168.75 317398.56

Minimum End Bal-

ance

60371.95 69248.86 86450.04 87921.54 60564.61

Average Num. of

Operations

11.10 9.41 8.36 9.26 185.23

% At Loss 19 33 37 27 15
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According to Table 4.7 the most successful method for Test4 is the Combined DQN

Method which has the maximum average end balance and the minimum loss rate. SAHOL

is the worst performing method. SAHOL has the minimum average end balance and the

37 percent of the episodes ends at loss. The change of the profit and loss sell rates affected

the performance of the Combined DQN Method significantly. DQN agent for ARCLK has

10, ASELS has 5, SAHOL has 45 and TUPRS has 2 episodes out of 100 episodes perform

better than BH strategy. At Test4, again as it is for the Test3, Stochastic Oscillator is in

loss due to the increase of the costs; because of using a cost rate rather than a fix cost.

4.3. Discussions of the Results

Results of the training period shows that for all DQNs according to 100 episode of

SMA average end balance increases, number of operations significantly drops, loss rate

and bankruptcy rate decreases. The most successful DQN agent is that is used for training

with the data of ASELS which has the SMA 100 end balance of 8978.65 TL at the end

of the training period. The second successful DQN agent for the training period is used

for training with the data of TUPRS, which has the SMA 100 end balance of 5503.66 TL.

The third successful is the ARCLK DQN agent which has the SMA 100 end balance of

5219.57 TL. The least successful is the SAHOL DQN agent which hast the SMA 100 end

balance of 3318.71 TL at the end of the training phase. The bankruptcy rate and the loss

rate drops below 5 percent at the end of the training period. The SMA 100 number of

operations (transactions) drops from above 500 to around 40.

At the test period 4 DQNs run simultaneously for 100 episodes to calculate the Com-

bined DQN. There are 4 tests experimented at this thesis. At the first test the initial

investment is 1000 TL, at second test it is 10000 TL, at third and forth test it is 100000

TL. At the first and second tests 1 TL transaction cost is applied. However, for the third

and forth test 0.0018 cost rate fee is applied.

If the Test 1 is analyzed its results are parallel with the training period. DQN for

ASELS has the best average end balance and the TUPRS has the lowest at lost percentage.

The Combined DQN performs worst that it is at loss for 55 episodes from 100 episodes.
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At Test 2 DQN for the ASELS has the highest end balance and the Combined DQN

method has the second. Although the Combined DQN method has the second best end

balance 30 episode ends at loss.

At Test 3 DQN for the ASELS has the highest end balance and the maximum return

of all tests with 671 percent profit return at maximum end balance. Using cost rate of

0.0018 affected the performance of the DQNs and the Combined Method that loss rate is

increased for all.

At Test 4 Combined DQN Method is the most successful method. It has approximately

40.17 percent average profit return. Also, the loss rate drops to 15 percent due to the

change of the profit and loss sell rates.

For 14 day period Stochastic Oscillator, SAHOL DQN agent performs better in all

episodes for all tests. Test2 is the best performance for Stock Oscillator. However; still

DQN for ARCLK has 64, ASELS has 20, SAHOL has 100 and TUPRS has 20 episodes

out of 100 episodes performs better than 14 day period Stochastic Oscillator. For Test3

and Test4 because the costs increased and calculated according to cost rate rather than fix

cost; Stochastic Oscillator showed poor performance and lost money.

Result of the test period shows that the success of the test period is directly propor-

tional to the training period. ASELS was the best performing at both training and test

periods. The affect of the cost is decisive for the success of the agents as well as the suc-

cess of the Stochastic Oscillator. DQN agents tend to decrease the number of operation

(transactions) that it seems that they want to hold the stocks within a long period. The

Combined DQN method is not the best for all the test methods except the forth test, but

it successfully increase the number of operations. BH strategy has all the advantages and

performs as best technique.
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5. CONCLUSION

Within the scope of this thesis, a Reinforcement Learning agent with DQN method

and a new test method called the Combined DQN method has been developed. Daily

parameters as well as technical analysis methods of Stochastic and MACD parameters are

given as input to the DQN agent. The DQN agent is trained for 5000 episodes. 4 DQN

agents tested simultaneously to calculate the Combined DQN method for 100 episodes in

three different experiment with different conditions.

The results of the training phase shows that a DQN agent can learn and perform better

at the end of the training phase. As the agent learns, the number of transactions signifi-

cantly drops; that means the DQN agent tends to hold the stock at long term.

The results of the test phase shows that the performance of the DQN agent at the test

phase is directly proportional the performance of the DQN at the training phase. The

costs affect the performance of the DQN agent. The Combined DQN Method is useful

to increase the number transactions. By the help of the increase of the costs at Test3

and Test4 DQN agents surpass the 14 day Stochastic Oscillator. BH strategy has all the

advantages and performs as best technique.

This thesis is also useful in understanding some controversial issues in the scientific

world between the fundamentalists and technical trading analysts. The DQN agent tends

to hold stock longer means that the agent founds out that long term investment is better

which is something like the fundamental analysts do; but the agent performs this by daily

and technical parameters. However, the DQN agent is able to survive in a harsh realis-

tic environment even if the Combined DQN method is used. This shows that the agent

can survive by using technical analysis methods. This thesis also shows that at least the

guidance of the AI is inevitable for stock market trading and it will be vital.

As future studies, the number of DQN agents can be increased to analyze how the

Combined DQN method performs with more than 4 DQN agents. Different technical

analysis methods can be given as input to the agent like RSI or Chaikin Money Flow. The

attaching and detaching mechanism can be improved for the Combined DQN Method.
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