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ÖZET

YÜZ VE İMZA BİLGİLERİ KULLANARAK ÇOK KİPLİ KULLANICI

DOĞRULAMA

Kağan ÖZTÜRK

Yüksek Lisans Tezi, Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Dr. Öğr. Üyesi Mustafa Berkay YILMAZ

Ocak 2020; 39 sayfa

Biyometrik doğrulama sistemleri, bir kişinin kimliğini doğrulamak için yaygın olarak

kullanılır. Yüz, imza, parmak izi ve iris popüler biyometrikler arasındadır. Biyometrik sis-

temler güvenlik, alışveriş ve finans gibi çeşitli uygulamalarda kullanılırlar. Özellikle adli

uygulamalarda çok düşük hata oranlarına sahip olmaları gerekmektedir. Kabul edilebilir

sonuçlar elde etmek için çeşitli problemlerle başa çıkmak zorundadırlar.

Tek kipli biyometrik sistemlerin limitlerinin üstesinden gelmek için, çok kipli bir doğ-

rulama sistemi sunulmuştur. İmza ve yüz özellikleri tek kipli biyometrik sistemler oluştur-

mak için kullanılmıştır. Daha sonra, bu sistemlerin skor seviyeleri kombinasyonu kullanı-

larak hata oranları azaltılmak istenmiştir. Çok kipli doğrulama sisteminin performansını

değerlendirmek için çeşitli saldırı ve gürültü prosedürleri uygulanmıştır.

Bilgisayarlı görü problemlerinde büyük başarı elde eden tekrarlayan ve evrişimsel

yapay sinir ağlarının kullanımı çevrimdışı imza doğrulaması için incelenmiştir. İki farklı

ağ mimarisinin kombinasyonlarının, düşük hata oranı elde etmek için kullanılabileceği

gösterilmiştir.

Kimlik doğrulama için kullanıcı-bağımsız ve kullanıcı-bağımlı yaklaşımlar araştırıl-

mıştır. İki evrişimsel sinir ağı mimarisi, kullanıcı-bağımsız imza öznitelikleri öğrenmek

için kullanılmıştır. Daha sonra, kullanıcı-bağımlı sınıflandırıcılar bir kimlik talebini kabul

etmek veya reddetmek için eğitilmiştir.

Yüz doğrulama sistemi geliştirmek için transfer öğrenme yaklaşımı kullanılmıştır.

Kullanıcı-bağımsız yüz öznitelikleri, eğitilmiş bir evrişimsel sinir ağı kullanılarak çıkarıl-

mıştır. Ardından, kullanıcı-bağımlı sınıflandırıcılar bu öznitelikler kullanılarak doğrulama

işlemi yapmak üzere eğitilmişlerdir.
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Bu tezde, yüz ve imza doğrulama sistemleri birbirinden bağımsız olarak geliştirilmiş

ve performansları değerlendirilmiştir. Daha sonra, bu iki sistemden gelen bilgiler çok kipli

bir biyometrik sistem tarafından kaynaştırılmıştır. Sonuçlar, çok kipli yaklaşımın, sistemi

saldırılara ve gürültüye karşı daha güçlü hale getirerek, tek kipli sistemlerden daha yüksek

doğruluk oranına ulaşmak için kullanılabileceğini göstermektedir.

ANAHTAR KELİMELER: Çok Kipli Biyometrik Sistem, İmza Doğrulama, Skor Kay-

naştırma, Yüz Doğrulama
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ABSTRACT

MULTIMODAL BIOMETRIC VERIFICATION SYSTEM USING FUSION OF

FACE AND SIGNATURE INFORMATION

Kağan ÖZTÜRK

MSc Thesis in Computer Engineering

Supervisor: Asst. Prof. Dr. Mustafa Berkay YILMAZ

January 2020; 39 pages

Biometric verification systems are widely used to verify the identity of a person. Face,

signature, fingerprint and iris are among popular biometrics. They are used in a wide

range of applications such as security, shopping and finance. It is required them to have

very low error rates especially in forensic applications. They have to deal with several

problems to obtain acceptable results.

In order to overcome limitations of unimodal biometric systems, a multimodal verifi-

cation system is presented. Signature and face traits are used to build unimodal biometric

systems. Then, score level combination of these system is utilized to reach lower error

rates. Several attack and noise procedures are applied to evaluate performance of the mul-

timodal verification system.

The usage of recurrent and convolutional neural network architectures, that have ac-

hieved great success in a broad range of computer vision tasks, are investigated for offline

signature verification. It is shown that, combinations of these two different approaches

can be used to achieve state of the art results.

User-independent and user-dependent approaches are investigated to perform aut-

hentication. Two convolutional neural network architectures are deployed to learn user-

independent signature features. Then, user-dependent classifiers are trained to accept or

reject an identity claim.

A transfer learning approach is utilized to develop a face verification system. User-

independent face features are extracted from a pre-trained convolutional neural network.

Then, these features are fed into user-dependent classifiers to perform verification.
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In this thesis, face and signature verification systems are developed and their perfor-

mances are evaluated separately. Then, a multimodal biometric system, which fuses infor-

mation coming from two biometrics, is proposed. Results show that, multimodal approach

can be used to obtain higher accuracy than unimodal systems and make the system robust

against spoof attacks and noise.

KEYWORDS: Face Verification, Multimodal Biometric System, Score Level Fusion,

Signature Verification

COMMITTEE: Asst. Prof. Dr. Mustafa Berkay YILMAZ

Asst. Prof. Dr. Hüseyin Gökhan AKÇAY

Asst. Prof. Dr. Umut TOSUN
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INTRODUCTION K. ÖZTÜRK

1. INTRODUCTION

Biometrics refers to recognition of a person based on their physiological or behavioral

traits. Physiological traits include, face, iris, DNA, palm veins, fingerprint. Behavioral

traits are related to patterns of human activities, such as signature and voice.

Biometric systems can be used for identification or verification. Identification systems

try to find an identity, based on query sample, among users in database. On the other hand,

the aim of verification systems is to accept or reject the claimed identity of a person.

The first step in a biometric verification system is enrollment. Users register to the

system by providing several biometric samples. In verification phase, a person, who may

either be enrolled to the system or not, claim an identity in the database by giving a query

sample. The aim of verification systems is to accept or reject the request by comparing

reference samples and query sample of the claimed person.

Biometric verification systems are used for authentication in a wide range of security

applications. Unimodal biometric systems use only one of these biometrics to verify the

identity. There are several challenges that unimodal systems have to deal with, such as

spoofing attacks, intra-class variance, non-universality, noisy data. These challenges can

be overcome by multimodal biometric systems making use of multiple biometric traits to

make a decision. In this work face and signature traits are examined.

Signature verification is commonly applied technique in legal and financial areas to

verify the identity of a person. Depending on the acquisition method, signature verifica-

tion systems are divided into two categories: online and offline. In online systems, signa-

tures are obtained during the writing phase via an electronic device. In addition to time

information of pixel locations in a signature image, angle and pressure of pen can be cap-

tured by some devices. In offline case, signatures are obtained after the writing process is

finished. A digital image represents a signature sample.

Offline signature verification can be said to be more challenging than online systems.

Availability of dynamic information in online systems make the imitation of a signature

more difficult. While some simple signatures can be imitated easily by impostor in offline

case, additional information in online systems make it more robust to forgeries.

In offline signature literature there are two types of forgeries: random forgery and skil-

led forgery. In the first case, forger does not have the any information about the shape of
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the signature and writer of it. Signatures of other users than being imitated is often consi-

dered as random forgeries. In skilled forgeries, impostors have access to some signatures

of the user and practice some time to imitate them. While it is easy to detect random for-

geries, skilled forgeries make verification task difficult. Genuine signatures of three users

can be seen in Figure 1.1. Skilled forgeries of these users is shown in Figure 1.2.

Figure 1.1. Genuine signatures

Figure 1.2. Skilled forgeries

Face recognition is one of the most studied topics in computer vision. Although some

biometrics are more reliable than face recognition technology, such as fingerprint and iris,

it has become the most popular biometric in recent years. While usage of face identifi-

cation systems is crucial for governments to maintain public security, face verification

systems are mainly used in user authentication applications.

There are three main steps in face recognition systems: face detection, feature extrac-

tion and classification. First, the location of a face in an image is found by a detection

system. Then, a feature extraction method is applied to reduce the dimension of an image

while preserving important features. This step is vital, since the performance of classifi-

cation step heavily depends on the quality of features. Finally, a classification can either

be used for identification or verification.

Face recognition systems have to deal with several challenges: illumination (different

level of lighting condition), pose variation (frontal, non-frontal), aging, occlusion (glas-

ses, hat, beard, mustache etc.), expression. While humans are remarkably good at face
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recognition without being effected some of these problems, it is troublesome to extract

robust features that can overcome these variations in a face verification system.

Classification approaches in verification systems can be divided in two categories:

user-independent (UI) and user-dependent (UD) classification. In the first case, a single

classifier is developed to make decision for all users. In the latter case, a classifier is

trained for each user. It is expected that UD classifiers are capable of catching using

specific information and perform better than UI approach. However, complexity of UD

systems grows as the number of users increase.

The performance of a verification system can be measured by following evaluation

metrics:

• False Acceptance Rate (FAR): FAR shows that a verification system how often

falsely accepts an identity.

• False Rejection Rate (FRR): FRR is a measure of the likelihood that a verification

system will reject a query by a genuine user.

• Equal Error Rate (EER): EER is found by looking at the point where FAR and FRR

are equal.

• Distinguishing Error Rate (DER): DER is the average of FAR and FRR.

A biometric system consists of 4 parts: sensor, feature extraction, matching and deci-

sion. Data is acquired via an appropriate device. For example, a camera is used to obtain

a face image. Then, features of data are extracted for ease the work of next steps. Proper

methods are determined to extract robust features based on data and task. Next, extracted

features are compared in matching module and a score is produced. Finally, decision is

made by looking the score. For instance, a face verification system gives a similarity score

for a query and either accept or reject the request.

Biometric systems can be combined to be more powerful at different levels: feature,

matching and decision. An example fusion of face and fingerprint data at different levels

can be seen in Figure 1.3.
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Figure 1.3. Multimodal fusion at different levels (Ross and Jain 2004)
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2. LITERATURE REVIEW

While the purpose of recognition systems is to find the identity of a query sample, if

it exists in database, the aim of verification systems is to check if a query sample belongs

to the claimed identity. Although these systems have different goals, there are many over-

lapped techniques used by both systems. Hence, literature of recognition systems can be

utilized by verification systems.

Face verification and signature verification systems are well-studied topics. These sys-

tems have high intra-class variation that makes verification task difficult. Also, they are

susceptible to spoof attacks and noise. Multimodal biometric systems can overcome these

problems because, they have multiple and independent biometrics. As they have more

information about users, they can achieve better accuracy than unimodal systems.

2.1. Convolutional Neural Networks

Convolutional neural networks (CNN) have achieved great success on various compu-

ter vision tasks recently. It is first introduced in (LeCun et al. 1998) with the backpropa-

gation learning algorithm. They proposed LeNet-5 for handwritten digit recognition. The

architecture of LeNet-5 is shown in Figure 2.1. It is trained using 60000 images of size

32× 32.

Figure 2.1. LeNet-5 architecture (LeCun et al. 1998)

In (Krizhevsky et al. 2012), a CNN architecture proposed to recognize 1000 objects.

1.2 million training images are used. It has 60 million trainable parameters in 5 convolu-

tional and 3 fully-connected layers. Input size of the network is 224 × 224. The network

is implemented on two graphical processing units. They showed that CNNs can be very

powerful in large scale computer vision tasks.
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Siamese neural network (Bromley et al. 1994) is a CNN architecture that takes two

input images and gives a similarity score. It is composed of two shared layers and at

the end of the network they are concatenated to measure the distance. Zagoruyko and

Komodakis (2015) propose 2-channel network to compare two images. Images are joined

in the third dimension. For image size of M ×N , input size of the network is M ×N ×2.

They showed that this architecture can achieve better results than the siamese network

architecture.

2.2. Face Verification

Recent works, that use convolutional neural networks, improved the performance of

face verification systems. Taigman et al. (2014) align faces to a 3D model before fed

into the convolutional neural network. CNN is trained on the SFC dataset that includes

4.4 million face images from 4000 people. Then, they train a siamese network, using the

trained CNN without the top layer, to classify whether two images belong to the same

person or not. The performance of the proposed work on the LFW dataset (Huang et al.

2008) is 97.35% and 91.4% on the YTF dataset (Wolf et al. 2011).

In (Sun et al. 2015), the network is trained with both identification and verification

signals to learn features. They add these supervisory signals to early convolutional layers

as well as fully connected layers. An ensemble of 25 networks are used for 25 different

face patches. They achieved 99.47% and 93.2% verification accuracies on LFW and YTF

datasets respectively.

Schroff et al. (2015) propose FaceNet that learns mapping from face images to a Euc-

lidean space where distances show the measure of face similarity. The network is trained

to give small distance to face images belonging to the same person and large distance to

images of different people. They used triplet loss where three images (anchor, positive

and negative) are compared. The goal is to make anchor closer to positive than nega-

tive sample. An online triplet selection method is presented for fast convergence. They

reported 99.63% accuracy on LFW and 95.1% accuracy on YTF datasets.

Parkhi et al. (2015) propose a data collection method from Internet. After collection

procedure, they trained the network to classify 2622 identities each has up to 1000 images.

Once the training is done, the top layer is removed and a triplet loss training procedure

is employed similar to in (Schroff et al. 2015). It obtains 98.95% accuracy on LFW and
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97.3% accuracy on YTF datasets.

Wen et al. (2016) propose a new supervision signal called center loss to classify face

images. It learns a center for features of each class and penalizes distances between featu-

res and their corresponding class centers. The CNN is trained under the joint supervision

of the softmax loss and center loss. The proposed method achieves 99.28% and 94.9%

accuracies on LFW and YTF datasets respectively.

2.3. Signature Verification

Signature verification systems are divided into two categories as online and offline. In

online systems, signatures are usually obtained by an electronic tablet and pen. Signatures

are represented as a sequence over time, containing the position of the pen and depending

on acquisition device some additional information can be included such as angle of a

pen and pressure. In contrast, offline verification systems obtain signatures after writing

process is done via scanners. Thus, they only deal with static digital images of signatures.

Offline Signature Verification has been of great interest to researchers. In (Yılmaz and

Yanıkoğlu 2016), scores of user-dependent and user-independent classifiers are fused to

make decision on query signatures. Scale invariant feature transform, histogram of orien-

ted gradients (HOG) and local binary patterns (LBP) features are extracted to represent

signatures. They achieve 7% EER on GPDS-160 (Ferrer et al. 2005) using 12 reference

signatures of subjects.

Hu et al. (2017) proposed a user-independent verification system utilizing fusion of

LBP, HoG and statistical gray-level co-occurrence matrix. Random Forest is utilized for

classification. They achieve EER of 7.42% on 140 subjects from GPDS-160 database

using 12 reference signatures per subject.

Ribeiro et al. (2011) propose restricted boltzmann machines to learn features from

signatures. They did not test the performance of features and only report visual represen-

tation of weights. In (Khalajzadeh et al. 2012) CNN is used for verification of Persian

signatures. They only consider classifying different subjects and did not consider skilled

forgeries on test.

Soleimani et al. (2016) propose deep multitask metric learning (DMML) for offline

signature verification. DMML consists of shared layer for all subjects and user-specific

layers at the end. Given a pair of signatures, it learns a distance metric to determine
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whether they belong to the same user or not. It achieves EER of 20.94% on subset of

GPDS-960 database (Ferrer et al. 2012) including 300 users.

Hafemann et al. (2017) propose a novel loss function including skilled forgery infor-

mation to learn writer-independent features. The CNN is trained to classify different users

and distinguish genuine and forgery signatures simultaneously. They achieve 1.72% EER

on GPDS-160 using 12 references per user.

2.4. Multimodal Biometric

Multimodal biometric systems can be used to achieve better performance than uni-

modal systems. Fusion of different biometrics can be combined at different levels such

as sensor level, feature level, score level and decision level. Awang et al. (2013) propose

a feature level fusion of face features and online signature features for recognition. Li-

near Discriminant Analysis (LDA) is utilized to overcome high dimensionality problem

of combined features. They use ORL face database (Cambridge 2016) and SuSIG signa-

ture database (Kholmatov and Yanikoglu 2009) for their experiment. They achieve 97.5%

recognition accuracy.

In (Kazi et al. 2012), face and signatures are combined at score level. They analyze the

performance of a normalized cross-correlation matcher and simple sum of scores fusion

techniques. They show that fusion of face and signature scores improved the accuracy rate

about 10% than unimodal system.

In (Lumini and Nanni 2017), overview of fusion approaches is presented for multimo-

dal verification systems. Score level fusion methods are explored. They report that better

results can be achieved using combination of different techniques.

Multiple traits are used to build a identification system in (Soleymani et al. 2018). Fe-

ature level combination of iris, fingerprint and face samples are utilized. They use CNN

to extract features from each trait. Then, features are joint together for optimization. They

report that optimization of joint representation concurrently superior to independent opti-

mization of different models.

Kartik et al. (2008) present a multimodal system that uses face, speech and signatures

of subjects. A score level fusion method is applied and the performance of the system aga-

inst noise is reported. In (Rattani et al. 2007), feature level fusion of face and fingerprint

is presented. They propose a method to combine features of each traits while reducing the
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dimension. They report that the proposed fusion method at feature level perform better

than score level fusion approach.
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3. MATERIAL AND METHOD

3.1. Signature Verification

3.1.1. Preprocessing

In order to help training neural networks a simple preprocessing technique is app-

lied to signature images. First, pixel values are inverted by subtracting them from 255 so

that background pixels become 0. Then, connected components consisting of less than

40 pixels are removed with the assumption that they are not characteristic of signatures

of writers and can be considered as noise. Minimum and maximum x, y coordinates of

bounding box are found by removing rows and columns with zero values before and after

them. Lastly, the image is resized to a fixed size to feed a convolutional neural network.

A signature image and its preprocessed form is shown in Figure 3.1.

Figure 3.1. Preprocessing

3.1.2. Two-channel network

Siamese and two-channel neural networks are used to measure distance between two

images. They take two images as inputs and they are trained for making decision whether

two input images are similar or not.

In the proposed model, a two-channel network is utilized to perform UI signature

verification. First channel of the input is used for genuine signatures and second channel

is used for query (genuine or skilled forgery) signatures. During training, the network is

forced to learn features for reference and query signatures differently, since first channel

is only used for genuine signatures. Once the training is finished, the network can also be

used to extract features and train user-dependent models. As it allows user-dependent and

user-independent verification concurrently in a single forward propagation, it is efficient

to combine these two approaches and obtain a robust verification system. Structure of the

two-channel convolutional neural network can be seen in Figure 3.2.
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Figure 3.2. The proposed 2-channel CNN

Two similar CNN architectures are built for verification of binary and gray-level signa-

ture images separately. While gray-level model reduces dimension by using convolutional

layer with stride of 2, binary model replaces these layers with max pooling layers to avoid

overfitting.

Each convolutional layer is followed by batch normalization (Ioffe and Szegedy 2015)

and then ReLU activation function (Nair and Hinton 2010) is applied. The network op-

timizes its parameters with the objective of minimizing binary cross-entropy loss. Adam

optimizer (Kingma and Ba 2014) is used to train the network. Dropout (Srivastava et al.

2014) layers are applied to regularize the network. Hidden units in layers are given in

Table 3.1.

In Table 3.2, convolutional layers denoted with C3, C6, C9 and C12 are only applied

to gray-level model. In binary model, max-pooling layers are deployed in place of these

convolutional layers. Lower hidden unit values are given for binary model in C4, C5, C7,

C8, C10, C11 and higher values are given for gray-level model.

Two images are concatenated in the third dimension to feed the network with input

size of 100×150×2. Genuine pairs and genuine-skilled forgery pairs of each user are used

to train the network. Once the training finished, it is employed to give a score between

0 and 1 indicating the probability of query signature being skilled forgery. Additionally,

features extracted from GAP layer are used to train UD classifiers per user. It is expected

that combination of these UI and UD approaches can be utilized to obtain better results.
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Table 3.1. Number of hidden units in 2-channel CNNs

Layers Hidden units

Convolution C1 & C2 30

C3 or Max-Pooling 30 (C3)

Dropout (0.5)

Convolution C4 & C5 60 or 30

C6 or Max-Pooling 60 (C6)

Dropout (0.5)

Convolution C7 & C8 100 or 60

C9 or Max-Pooling 100 (C9)

Dropout (0.5)

Convolution C10 & C11 150 or 100

C12 or Max-Pooling 150 (C12)

Dropout (0.5)

Convolution C13 & C14 200

GAP

Fully-Connected 200

Dropout (0.5)

Fully-Connected (softmax) 2

3.1.3. Recurrent binary patterns

Recurrent binary pattern (RBP) network is a user-dependent recurrent neural network

(RNN) that learns sequential relations between LBP histograms over image windows.

LBP features extracted from image windows are applied to a BiLSTM layer so that the

network can capture sequential information, which is expected to be useful for making

decision about a query signature.

LBP finds local features in an image by considering binary relationship between a

center pixel and its neighbors. Calculation of LBP for a pixel is shown in Equation 3.1.

fLBP (xc, yc) =
L−1∑
n=0

2nξ(in, ic) (3.1)
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In Equation 3.1, in is the intensity of nth neighbor pixels and ic is the intensity of the

center pixel. L is the number of neighbor pixels considered for calculation. Function ξ(·)

gives a binary result. If in ≥ ic the result is 1 otherwise it is 0. In this work, L = 4 pixels

are chosen to form neighbor groups resulting in 16 different fLBP (·) codes between 0 and

15.

After the codes are calculated, histogram for an M × N image is built according to

Equation 3.2.

fH(k) =
M∑

m=1

N∑
n=1

γ(fLBP (xm, yn), k) (3.2)

In Equation 3.2, K = 2L − 1 is the maximum LBP value. Histogram element k is

between 0 and K. Function γ(x, y) is equal to 1 if x = y.

All neighborhoods up to Chebyshev distance 4 from the center pixel are considered.

Neighborhoods for each distance are calculated separately since considering all 80 ne-

ighbors would result in 280 codes. 4 equidistant pixels are chosen to form neighborhoods

per distance, similar to (Yılmaz 2015). One example group for Chebyshev distance 2 is

shown in Figure 3.3. In this case 4 different groups can be formed in which pixels are

equidistant.

Figure 3.3. An example neighbor group for Chebyshev distance 2

There are 2 different neighbor groups can be chosen for Chebyshev distance 1, 4

neighbor groups for Chebyshev distance 2, 6 neighbor groups for Chebyshev distance

3 and 8 neighbor groups for Chebyshev distance 4. In total, there are 20 histograms and

24−1 different LBP codes are considered. The case when all neighbors are zero is omitted.

Therefore, 20× 15 = 300 dimensional vector is used to represent signatures.

In order to reduce the dimensionality and obtain better results, most and least frequent

LBP codes are removed from signature representations. A subset of training set is used to
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detect these codes. Most frequent 40 and least frequent 40 codes are discarded resulting

in 220 dimensional feature vector.

An RNN layer learns sequential information from 5 horizontal and 5 vertical image

windows. 10% overlapping windows are considered. It treats windows as time steps so,

each feature consists of 10 time steps. Features are divided by the maximum value for

normalization. The proposed network is shown in Figure 3.4.

Figure 3.4. UD-RBP network architecture

A BiLSTM layer is a type of RNN architecture that learns bidirectional information

in time steps. The proposed BiLSTM layer is used to learn sequence in LBP-coded image

windows. It has 300 hidden units. Hyperbolic tangent and sigmoid functions are used as

state and gate activation functions respectively.

3.1.4. Forgery identification CNN

In Forgery identification CNN (FI CNN), there are |τ | subjects used to train the net-

work. Genuine signatures and skilled forgeries of users are considered as separate classes

resulting in 2|τ | outputs. The proposed CNN is shown in Figure 3.5.

Figure 3.5. Architecture of the proposed CNN with forgery outputs
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Table 3.2. Number of hidden units in the forgery identification CNN

Layers Hidden units

Convolution 15

Convolution 15

Max Pooling

Convolution 30

Convolution 30

Max Pooling

Convolution 60

Convolution 60

Max Pooling

Convolution 120

Convolution 120

Max Pooling

Convolution 240

Convolution 240

Max Pooling

Fully-Connected 1000

Dropout (0.5)

Fully-Connected (softmax) 950

Signatures images are resized to 100× 150 to feed the CNN. There are 10 convoluti-

onal layers, 5 max pooling layers and 2 fully-connected layers in the network. A dropout

layer is used for regularization. Convolutional layers and the first fully-connected layer are

followed by batch normalization layer and then ReLU activation function. At the end of

the network, softmax function is used to normalize outputs. In training phase, the network

minimizes categorical cross-entropy cost function using adam optimizer.

Once the training is done, features extracted from output of the first fully-connected

layer are used to train UD classifiers per user. Number of hidden units in corresponding

layers of the CNN is shown in Table 3.2.
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3.1.5. Other models

SigNet-F (Hafemann et al. 2017) and SigNet-SPP-300dpi (Hafemann et al. 2018) are

used to compare results with the proposed methods. In SigNet-F, skilled forgeries are used

during training. The network has two cost function: categorical cross-entropy and binary

cross-entropy. While categorical cross-entropy forces the network to recognize different

users, binary cross-entropy term forces it to learn differences between genuine signatures

and skilled forgeries. Weighted sum of these two terms is used to combine them. They

also noted that, the model achieves better results if they are not penalized the network for

misclassification of user of a skilled forgery. In this case, categorical cross-entropy term

is ignored.

SigNet-SPP-300dpi is a CNN architecture that accept input with various sizes. They

show that, the model achieves comparable results with SigNet-F. They also investigate the

effect of different resolutions. It is shown that, higher resolutions can improve the results

if skilled forgeries are used to train the network.

3.2. Face Verification

Transfer learning approach is considered to deploy a face verification system. Pre-

trained VGG-Face (Parkhi et al. 2015) is utilized to extract features. The network is

trained to classify 2622 identities. Up to 1000 face images per subject, in total 982803

images, is used for training. The architecture of VGG-Face can be seen in Figure 3.6.

Figure 3.6. The architecture of VGG-Face (Parkhi et al. 2015)

While the pre-trained network can only recognize people in its training set, features

extracted from an intermediate layer can be useful to recognize different people. It is assu-

med that, training set is large enough to learn distinguishing features not only for person

in training set but also for different set of people. The last fully-connected layer before
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the softmax layer is used for extracting features. Three different classification approaches

are considered: one-vs-all, one-vs-one and verification.

3.2.1. One-vs-all model

One-vs-all models are trained for each registered subject in a system. N number of

reference face images are used as positive samples and images of other subjects are used

as negative samples to train a 1-vs-all verification model.

For a query face image Q claiming an identity c, the trained model of the user M c

gives a verification score M c(Q) between 0 and 1. If M c(Q) > θ model verify the cla-

imed identity otherwise query is rejected. A global or user-based threshold value θ can be

used to make decision. For a system with k enrolled users, recognition can be done as in

Equation 3.3.

max{M i
1−vs−all(Q), i = 1, ..., k} > θ ⇒

assign Q to subject i,

max{M i
1−vs−all(Q), i = 1, ..., k} ≤ θ ⇒

reject Q.

(3.3)

3.2.2. Verification model

Verification model is similar to 1-vs-all model. The only difference is the selection of

negative samples to train each classifier. For training set T , another set T ′ is considered

such that T ∩ T ′ = ∅. Additional to the face images of other subjects in T , T ′ is also used

as negative samples. It is assumed that, these images in T ′ can be collected readily from

publicly available databases and can lead to performance gain, especially if T consists of

few subjects.

Similar to 1-vs-all model, evaluation of k models is needed to recognize a query image

according to Equation 3.3.

3.2.3. One-vs-one model

For k users, there are k× (k− 1)/2 1-vs-1 models trained to compare users with each

other. A perfect binary tree is utilized to make a decision. One subject is eliminated at
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each level and therefore k − 1 evaluation is needed to identify a query. An example of a

tree for k = 5 users is given in Figure 3.7.

Figure 3.7. A perfect binary tree for 5 users (Anonymous 2 2019)

According to Equation 3.4, evaluation starts at the root node. Query is assigned to a

subject at each level and decision is made at the leaves of the tree.

Mi−vs−j(Q) > θ ⇒

assign Q to i or j whoever gets higher score,

Mi−vs−j(Q) ≤ θ ⇒ reject Q.

(3.4)

3.3. Multimodal Verification

A multimodal verification system which handles signature and face images is introdu-

ced. Each modality is verified independently and a score level combination is applied to

make the final decision to either accept or reject. For signature verification, two-channel

CNN with writer-independent and writer-dependent combination described in Section

3.1.2. is utilized.

18



MATERIAL AND METHOD K. ÖZTÜRK

Score obtained from signature model is denoted as Ssign. For face verification, user-

dependent models trained with VGG-Face descriptor described in Section 3.2. is utilized.

Score obtained from the face model is denoted as Sface. Proposed system applies a basic

score level combination rule to generate the final score Sfinal = αSsign + (1 − α)Sface

where the weight is experimentally found over a validation set in a user-independent man-

ner. Multimodal verifier is illustrated in Figure 3.8.

Figure 3.8. Proposed multimodal verifier

Two types of attacks are investigated. First one is the usual verification task in a cont-

rolled environment and is denoted as Attack1. A forger can try to imitate a signature and

can only show his own face to the camera. A genuine input thus consists of a genuine

signature and face pair, a forgery input consists of a skilled forgery signature and the face

image of the forger.

In the second kind of attack, it is assumed that in addition to presenting signature

forgery and forger’s face, a forger can clone a genuine template but for only one of the

modalities. For example; the forger can either show the image of the claimed identity to

the camera or carbon-copy the signature of the claimed identity, but not both at the same

time. This kind of attack is called Attack2. A genuine input thus consists of a genuine

signature and face pair, while a forgery input may consist of skilled forgery signature and

the face image of forger, a skilled forgery signature and face mask image of the claimed

identity, a carbon-copied signature of the claimed identity and the face image of the forger.

Attack2 is a superset of Attack1 and it is impossible to overcome for unimodal face

or signature verifiers. As a result, it is not necessary to experiment on a unimodal basis
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as the error rate can be theoretically found. Assume a unimodal system has an equal

error rate ε. Also assume the probability of template-copy attack is p over forgery inputs.

Probability of usual Attack1 is thus 1− p. FRR is in any case ε. However, FAR will be

p(1 − ε) + ε(1 − p) where (1 − ε) is true accept rate of the system which becomes false

accept in case of template-copy attack. Numerically put; if a face verification system has

EER of 2% and probability p that an attacker successfully shows the mask of the claimed

identity to the system is 0.3, FAR will be (0.3× 0.98) + (0.7× 0.02) = 30.8%. Average

error rate of the system will thus be (FAR + FRR)/2 = 16.4%

Varying levels of noise has been added to face images as described in Section 4.3.,

to measure the robustness of the proposed multimodal verification system. Note that face

image noise removal or reduction is not of interest in this thesis, hence the aim is to

investigate the contribution of signature when face image becomes noisy.
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4. RESULTS AND DISCUSSION

4.1. Unimodal Signature Verification Models

GPDS-960 (Ferrer et al. 2012) and GPDS-Synthetic (Ferrer et al. 2017) databases

are equipped to conduct experiments. GPDS-960 database consists of gray-level offline

signature images of 881 users. There are 24 genuine signatures and 30 skilled forgeries

provided for each user. The database is both used to train and test proposed signature

verification models. Gray-level values are converted to binary in the experiments with

binary model.

GPDS-Synthetic database consists of 10000 subjects. Each subject has 24 reference

signatures and 30 skilled forgeries generated synthetically. Offline signature images are

provided with gray-level values. First 300 subjects are used on test to evaluate the perfor-

mance of the models trained on GPDS-960 database.

4.1.1. Binary and gray-level comparison of 2-channel CNN

GPDS-960 database is divided into different subsets as shown in Table 4.1. Test set T

is divided into different subsets as T1 and T2 to separate reference and query signatures. V1

and V2 are used to determine hyperparameters of CNN and UD SVMs. Gray-level values

are converted to binary for conducting experiments for binary model.

Figure 4.1. Database partition for 2-channel CNN

Last 475 subjects τ are used to train UI CNN. While all possible 24 × 23 pair of

genuine signatures are used in training for each user, randomly selected subset of all

possible permutations 24 × 30 of genuine-forgery pairs are used to balance samples of

two classes. In total, 475 × 24 × 23 × 2 pairs are used in training. For validation, 50

positive and 50 negative pairs are randomly selected from each user in V1.
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Once the model is trained, it does not require any further training process. It can make

decision for signatures of users that are not included in the development set τ . While a

single reference is sufficient to give a similarity score, multiple references can be used to

increase stability. Average score is calculated in this case.

It is needed to have a threshold value to make a binary decision using CNN scores.

Threshold value can be independent from users or user-based value can be chosen. In

order to report EER on test set, threshold values are determined by looking at test scores.

UD SVMs are trained with 200 dimensional features extracted from the GAP layer

of the UI CNN. They are trained using 5 and 12 references per user. Hyperparameters of

classifiers are decided based on the performance on validation set V2. Skilled forgeries

are not included in training set. Reference signatures of other users are used to create

genuine-forgery pairs. For a query signature, signature representations are extracted from

CNN as many as reference numbers. Then, an average score is calculated from SVM

scores. UD and UI threshold values are used to report EER. UD SVM and UI CNN are

fused to obtain robust results. Weighted sum of scores are combined. V2 is used to learn

combination weight.

Table 4.1 shows the results of gray-level training. Combination of UI CNN and UD

SVM are given in Table 4.2. Results of training with binary signatures can be seen in Table

4.3 and combination of UI and UD approaches for binary models is shown in Table 4.4.

Binary and gray-level models are both tested on gray-level and binary test set T . Results

for reference numbers N = 1, N = 5 and N = 12 are reported.

Table 4.1. Results with gray-level training

N
UI threshold EER UD threshold EER

UI UD UI UD

Gray T

1 8.74% - 6.81% -

5 7.39% 6.52% 5.75% 4.72%

12 7.20% 4.29% 5.78% 2.88%

Binary T

1 32.74% - 29.74% -

5 31.92% 23.49% 27.26% 19.65%

12 31.22% 17.95% 26.80% 15.03%
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Table 4.2. Combination results with gray-level training

N UI threshold EER UD threshold EER

Gray T
5 5.38% 3.92%

12 4.13% 2.94%

Binary T
5 21.57% 18.21%

12 18.08% 14.73%

Table 4.3. Results with binary training

N
UI threshold EER UD threshold EER

UI UD UI UD

Gray T

1 32.15% - 28.69% -

5 30.38% 14.03% 25.90% 11.01%

12 30.18% 11.15% 25.75% 8.30%

Binary T

1 24.97% - 21.22% -

5 22.32% 15.46% 18.95% 11.41%

12 21.64% 12.14% 18.47% 9.31%

Table 4.4. Combination results with binary training

N UI threshold EER UD threshold EER

Gray T
5 14.10% 10.85%

12 11.12% 8.26%

Binary T
5 15.40% 11.31%

12 11.86% 9.22%

The best result is obtained when the model is trained and tested with gray-level sig-

natures since they have more information than binary signatures. While UD SVMs are

always better than UI CNN, UI CNN gives compatible results, even using only 1 refe-

rence signature.
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4.1.2. Experimental protocol for RBP

UD RBPs are trained for each subject. Reference signatures as positive examples and

random forgeries as negatives are used to train the network for making a binary decision.

Skilled forgeries are not included in training set. Global and user-based thresholds are

used to report verification EER.

Figure 4.2. Database partition for RBP and forgery identification CNN

The subsets of GPDS-960 are given in Figure 4.2. GPDS-160 (first 160 subjects) and

GPDS-300 (first 300 subjects) are used to test the performance of the RBP network. The

hyperparameters of the network are set depending on the performance on validation set

V . Test set is divided into two subsets as T1 and T2. T1 represents the reference signatures

used to train the network. T2 represents the query samples composed of genuine signatures

and skilled forgeries. N = 5 and N = 12 number of references are considered to train the

model.

4.1.3. Experimental protocol for forgery identification CNN

The subset τ composed of 475 subjects are used for training the CNN. τ 1, consisting

of 20 genuine signatures and 20 skilled forgeries of each user in τ , is used to train the

network. Remaining samples τ 2 are utilized to set hyperparameters of the network.

Once the training is done, UD classifiers are deployed using features extracted from

the first fully-connected layer of the CNN. Validation set V is utilized to determine hy-

perparameters of the UD SVMs. N = 5 and N = 12 number of references are considered

to train the classifiers. The same test subsets in Section 4.1.2. is utilized for comparison.
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4.1.4. Experimental results

GPDS-160, GPDS-300 and GPDS-Synthetic databases are used to measure the per-

formance of the proposed methods with using different number of references. Reference

and query samples are determined randomly and repeated 3 times. Average EERs are re-

ported for all models. User-independent and user-dependent thresholds are used to report

ERRs. Results are shown in Tables 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10.

SigNet-F and SigNet-SPP-300dpi is utilized for comparison with the proposed mo-

dels. The same test protocol is applied to all UD classifiers. Score combinations of dif-

ferent models are provided. Combination weights are learned from the validation set V .

Since it is learned from another set than test set, some combination results do not lead to

improvement and therefore are not included in tables.

Table 4.5. EER results for N = 5 on GPDS-160

Method UI threshold UD threshold

RBP size 300 6.75% 5.16%

(1) RBP size 220 5.77% 4.29%

(2) FI CNN 7.34% 4.34%

(3) SigNet-F 4.28% 2.83%

(4) SigNet-SPP 4.86% 3.44%

1 & 2 3.38% 1.82%

1 & 3 2.41% 1.34%

2 & 3 2.97% 1.87%

3 & 4 3.92% 2.53%

1 & 2 & 3 2.05% 1.11%

1 to 4 1.93% 1.08%
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Table 4.6. EER results for N = 12 on GPDS-160

Method UI threshold UD threshold

RBP size 300 6.32% 4.72%

(1) RBP size 220 5.56% 4.24%

(2) FI CNN 5.08% 3.26%

(3) SigNet-F 3.51% 2.11%

(4) SigNet-SPP 4.39% 2.68%

(5) 2-channel CNN (UI & UD) 4.13% 2.94%

1 & 2 2.75% 1.63%

1 & 3 2.11% 0.98%

2 & 3 2.19% 1.27%

3 & 4 3.42% 1.99%

3 & 5 1.76% 0.88%

1 & 2 & 3 1.66% 0.81%

1 to 4 1.66% 0.81%

1 to 5 1.11% 0.57%

Table 4.7. EER results for N = 5 on GPDS-300

Method UI threshold UD threshold

RBP size 300 5.55% 3.99%

(1) RBP size 220 4.58% 3.29%

(2) FI CNN 6.26% 3.45%

(3) SigNet-F 4.38% 2.83%

(4) SigNet-SPP 5.83% 4.22%

1 & 2 2.79% 1.19%

1 & 3 2.22% 1.15%

2 & 3 3.06% 1.78%

3 & 4 4.21% 2.83%

1 & 2 & 3 1.86% 0.84%

1 to 4 1.90% 0.84%
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Table 4.8. EER results for N = 12 on GPDS-300

Method UI threshold UD threshold

RBP size 300 5.50% 3.79%

(1) RBP size 220 4.59% 3.18%

(2) FI CNN 4.40% 2.46%

(3) SigNet-F 3.64% 2.23%

(4) SigNet-SPP 5.12% 3.48%

1 & 2 2.10% 1.00%

1 & 3 1.90% 0.88%

2 & 3 2.30% 1.20%

3 & 4 3.56% 2.24%

1 & 2 & 3 1.54% 0.61%

1 to 4 1.53% 0.61%

Table 4.9. EER results for N = 5 on GPDS-Synthetic

Method UI threshold UD threshold

(1) RBP size 220 31.73% 31.16%

(2) FI CNN 31.55% 28.42%

(3) SigNet-F 27.47% 24.91%

(4) SigNet-SPP 35.00% 33.21%

1 & 2 28.82% 25.90%

1 & 3 26.50% 24.04%

2 & 3 25.90% 22.48%

3 & 4 27.07% 24.27%

1 & 2 & 3 25.08% 22.13%

1 to 4 25.08% 22.13%
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Table 4.10. EER results for N = 12 on GPDS-Synthetic

Method UI threshold UD threshold

(1) RBP size 220 26.32% 24.22%

(2) FI CNN 25.68% 23.52%

(3) SigNet-F 18.93% 16.98%

(4) SigNet-SPP 28.71% 26.83%

1 & 2 22.00% 20.01%

1 & 3 17.95% 16.16%

2 & 3 18.18% 15.62%

3 & 4 18.92% 16.85%

1 & 2 & 3 17.50% 14.80%

1 to 4 17.65% 14.93%

The performance of RBP network using histogram selection method is evaluated. Ex-

perimental results show that proposed technique to reduce dimension improves the accu-

racy.

GPDS-Synthetic EERs are much higher than results on GPDS-300 and GPDS-160.

It can be noted that, since GPDS-Synthetic database is composed of generated signatures

using modeled pens, the characteristics of signatures do not similar to each other and there

is no fine-tuning procedure applied to this test set.

The results show that, lower EERs can be achieved by using combinations of diffe-

rent models. While the best single model is SigNet-F, EER can be reduced by half using

combination of RBP network and Signet-F.

4.2. Unimodal Face Verification

Samples of 15 subjects from Yale (Anonymous 4 2019), 40 subjects from Essex

(Anonymous 1 2019) and 40 subjects from ORL (Anonymous 3 2019) databases are used

for the experiments. Each subject has 10 frontal face images. While images in Yale and

ORL are gray-scale, Essex database consists of color images.

10 subjects from Yale, 20 subjects from Essex and 20 subjects from ORL are consi-

dered as users enrolled to the system defined as T in Section 3.2.2.. The remaining 45
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Table 4.11. EER results for Yale

Global threshold User-based threshold

N 1 3 5 1 3 5

1-vs-all 7.6e−3% 2.5e−4% 6.3e−5% 1.5e−3% 0 0

1-vs-1 2.4e−2% 4.7e−3% 1.4e−3% 2.1e−2% 1.9e−4% 0

V1 1.6e−3% 0 0 7.4e−4% 0 0

V2 8.2e−3% 6.3e−5% 0 6.7e−3% 0 0

Table 4.12. EER results for ORL

Global threshold User-based threshold

N 1 3 5 1 3 5

1-vs-all 1.7e−3% 5.0e−4% 0 0 0 0

1-vs-1 6.8e−3% 7.2e−4% 2.2e−4% 1.1e−3% 2.9e−5% 0

V1 1.0e−3% 5.3e−4% 0 8.8e−5% 0 0

V2 3.7e−3% 8.2e−4% 0 1.8e−4% 0 0

subjects are used as random negatives T ′.

Random negatives are divided into two groups as T ′1 (22 subjects) and T ′2 (23 subjects).

T ′1 is used to train the verification model V . T ′2 is used to test all models.

Two different training protocols are applied for the model V . In the first one V1, samp-

les of other users in T are considered as negative examples with samples from T ′1. In the

other case V2, negative examples only consist of samples from T ′1. While we have to train

all models again when a new user register for V1, we do not have to update model for V2

since T ′1 is fixed.

Test results are reported for N = 1, N = 3 and N = 5 reference samples. References

samples are selected randomly 3 times. Average EERs are reported using global and user-

based threshold. Results for each database are given in Tables 4.11, 4.12 and 4.13.

Although the results are close to each other, verification models achieve better results

than 1 − vs − 1 and 1 − vs − all approaches. It is worth noting that, when a new user

enrolls, we have to train all models except V2.
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Table 4.13. EER results for Essex

Global threshold User-based threshold

N 1 3 5 1 3 5

1-vs-all 0 0 0 0 0 0

1-vs-1 3.2e−4% 0 0 0 0 0

V1 0 0 0 0 0 0

V2 0 0 0 0 0 0

4.3. Multimodal Verification

GPDS-960 signature and color FERET (Phillips et al. 2000) face databases are used

for experiments of multimodal verifier. A face detection method (Viola and Jones 2001)

is applied to subjects of color FERET database. An example of original image and face

detected image is shown in Figure 4.3.

Figure 4.3. Original image and detected face

After the faces are detected, first 300 subjects with the highest number of samples

are considered for experiments. Each subject are matched with the first 300 subjects from

GPDS-960 so that there are 300 artificial subjects having both face and signature samples.

Two different levels of noise and transformation are applied to face images to evaluate

robustness of multimodal verifier. For the first level, each of the following is indepen-

dently applied with a probability of 0.33: Rotation (angle ∼ N(µ = 15, σ = 1)), scaling

(factor ∼ |N(µ = 1, σ = 0.1)|), shear (λ ∼ U [0, 0.5]) and white noise for each color
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channel independently ∼ N(µ = 0, σ = 0.005).

For the second level, following processes are independently applied with a probability

of 0.5: Rotation (angle ∼ N(µ = 20, σ = 1)), scaling (factor ∼ |N(µ = 1, σ = 0.2)|),

shear (λ ∼ U [0, 0.8]) and white noise for each color channel independently ∼ N(µ =

0, σ = 0.005). Shear transformation is applied parallel to the y axis according to Equation

4.1.

x′
y′

 =

1 0

λ 1

x
y

 (4.1)

While rotating the face images, the following procedure is applied to get rid of the

empty spaces occurring as an artifact of rotation. First, face image is padded with the

value of the last matrix element on each dimension as the padding value (i.e. the first or

last row / column / corner for that direction, accordingly) for half the size of the image in

each direction. Then, padded image is rotated and the same number of rows and columns

used in padding are removed. This procedure is illustrated in Figure 4.4.

Figure 4.4. Rotation procedure

For the signatures; first 300 subjects of GPDS-960 are utilized with two-channel CNN

of writer-independent and writer-dependent combination. Number of reference signatures

per subject is only taken as 12 and cross-validations with random partitions and reference

set is performed.

For the faces; first 300 subjects having a necessary amount of image samples, obtained

from the processed color FERET database are utilized. Number of reference faces per

subject is 3 and cross-validations are performed similar to signatures. While combining

the scores of two modalities, all cross-validation reference-set selections are considered

to generate all possible multimodal pairs.
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Combination weight α is learned on last 100 subjects of the dataset used for multimo-

dal tests. All multimodal test results are thus obtained on the first 200 signature and face

subjects. Note that those signature and face subjects are matched as single multimodal

subjects according to the same order among signature and face subjects.

Unimodal EER results for the mentioned test protocol are shown in Table 4.14 for

Attack1 and Attack2 scenarios, while multimodal EER results and weights are shown in

Tables 4.15 and Table 4.16 for Attack1 and Attack2 scenarios respectively.

Table 4.14. Unimodal EER results

Attack type Signature Face Noisy Face Noisy Face (2)

Attack1 EER 2.89% 1.03% 2.15% 6.86%

Attack2 EER 21.61% 7.53% 7.67% 9.24%

Table 4.15. Multimodal EER results for Attack1 scenario

Signature and→ Clean Face Noisy Face Noisy Face (2)

EER 0.34% 0.72% 1.37%

α (combination weight) 0.2% 0.2% 0.4%

Table 4.16. Multimodal EER results for Attack2 scenario

Signature and→ Clean Face Noisy Face Noisy Face (2)

EER 2.87% 3.60% 7.56%

α (combination weight) 0.5% 0.5% 0.4%
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5. CONCLUSION

In this thesis, unimodal signature and face verification systems are investigated se-

parately. Several models are proposed for offline signature verification tasks. Usage of

different deep learning architectures, that have achieved great success on various com-

puter vision tasks, is analyzed. Score level combinations of models are used to lower

error rates. A pre-trained network is deployed to further improve verification results by

combining unimodal biometric systems.

Two CNN architectures are utilized to perform signature verification. In the first one, a

CNN architecture is used to distinguish different users and skilled forgeries concurrently.

Skilled forgeries are considered as separate classes and the network is forced to identify

them. In the second case, a two-channel architecture is presented to compare two signatu-

res. It is important to note that, after the training is done, this network does not require any

further training procedure to verify people who are not included in training set. However,

for the first one, it is necessary to train a classifier for recognizing test set.

A novel RBP network is proposed. It is assumed that, it can help to capture sequ-

ential information in signatures. It is shown that, CNN and RBP architectures are very

complementary and combination of them is an effective way to obtain better results.

User-independent and user-dependent approaches are analyzed to train verifiers. It is

reported that, the models trained in user-independent manner can be used to train user-

dependent classifiers. Furthermore, combination of two approaches is used to improve

results.

A score level combination approach is presented for unimodal biometrics. Several

noise and attack procedures are applied to evaluate robustness of the multimodal biometric

system. It is shown that, the usage of multimodal system is critical to overcome limitations

of unimodal systems.

Signature databases have small number of samples for each subject compared to com-

puter vision task in which deep learning techniques have been very successful. It is worth

noting that, although the most important factor of success for deep learning is the amount

of data, it can be very powerful even when the training set is small.

As a future work, in order to overcome the data limitation of signature databases,

usage of synthetic signatures for training offline signature verification system will be in-
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vestigated. Moreover, generator methods will be investigated to produce synthetic signa-

tures to improve performance of the classifiers.
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